Survey of Verified
Cryptography

CSCI-762 / Tom Arnold



Verified Cryptography

e Using tools to apply cryptography and prove that the
Implementation Is correct

 Assuming the algorithms and protocols are secure,
there are still many challenges in implementing them

« Memory Safety
e Functional Correctness

 Side Channel Resistance



Memory Safety

* High performance code usually written in memory unsafe
languages (C/C+4+).

* Vulnerabilities can allow attacker can access arbitrary memory.

 OpenSSL Heartbleed - Heartbeat request returning
uninitialized memory to client, allowing client (slow) read
access to memory to hunt for private keys and other secrets

* Managed languages like Java solve this but have worse
performance, complex implementation, unusable for
embedded/legacy code bases



Functional Correctness

* Specification usually given as IETF (Internet Task Force)
RFC document

e Turn spec into code, does it still match spec?
* Optimize code, does it still match spec?

* Exhaustive test suite not trivial
* Property based testing

* Proof assistants



Side-channel Resistance

Attacker can determine information by observing
runtime, CPU usage, power usage, etc

Can be caused by optimizations in code, e.g. shortcut
multiplication when operand is zero

Can be caused by arch level (CPU/memory)
optimizations like branch prediction and cache

Secret independence - Don’t allow optimizations/
shortcuts based on secret values



FStar (F*) Programming
Language

ML-based programming language from INRIA and Microsoft
Research

Features: refinement types, dependent types, proof assistant

* Pre-post conditions on functions that the compiler can use
to prove the code is correct

Compiles to OCaml/F#
* Low* dialect compiles to C

High level verification for low-level code



Low™

 Executable specifications (proofs) written in high-level
F*, operations written in Low™ dialect

* No recursive data structures, no dynamic allocation,
bounded heaps (region based memory management)

 Low* compiled to C for inclusion in other software or
manual verification

 Use the powerful type system to enforce memory
safety and secret independence in generated code



Implementation

 Implement algorithm in high-level F* code

* This is the executable specification

 No fancy stuff here, stay close to RFC
 Implement algorithm in low-level F* code

* Optimizations happen here, e.g. vectorization

 Low-level implementation linked to specification
through post-conditions



Refinement/Dependent
Types

* Adding constraints to a type, e.g.
* X: Uint32 - x is unsigned 32bit int

e X: Uuint32 {1 <=x<=10} - x is unsigned 32bit int between 1 and 10

* The constraints can be relative to other types, e.g. length <10 and
buffer size = length

* Checks performed at compile time

val p = 27130 — 5 (% the prime order of the field x)
type elem = n:nat {n < p} (* abstract field element *)

let x ~@ y : Tot elem = (x +y) % p (* field addition %)
let x x@ y : Tot elem = (x x y) % p (* field multiplication *)

https://eprint.iacr.org/2016/1178.pdf




Heap Model

 Heap divided into regions; regions can be subdivided
 Prevents memory corruption and simplifies verification

e Code works with fixed-sized buffers

hyper-heap:

region region

L oo Toi] o[~ [ni—]

abstract
concrete

heap:

https://www.fstar-lang.org/papers/mumon/paper.pdf



Stack Model

* Functions that only allocate on the stack can’t leak
memory

* Memory allocated on stack freed when stack frame
popped

 Functions can be annotated that they only allocate on
the stack (and not heap)



Secure Integers

* Only constant time operations allowed

* |If operation time varies, could reveal information to
attacker

 Avoid common optimizations that would make
operations variable-time

 Masked (bitwise) equality to prevent CPU branch
prediction



HACL*

* Library of verified cryptography primitives written in F*

* Stream ciphers: ChaCha20, Salsa20

* Hashing: SHA-2

* Signature: Ed25519

* Authentication: Poly1305, HMAC-SHA-2

* Authenticated crypto: ChaCha20-Poly1305
* Performance between OpenSSL C and ASM

* Proof-to-code ratio 2:1



1
2
3
4
3
6
7
8
9

10
11
12
13
14
15
16

Example - ChaCha20

let chacha20 — R4-
(len: uint32{len < blocklen})/ fet blocklen = 64, 2
(output: bytes{len = output.length}) 3
(key: keyBytes) 4
(nonce: nonceBytes{disjoint [output; key; nonce]}) 5
(counter: uint32) : Stack unit 6
(requires (A m0 — output € m0 A key € m0 A nonce € m0)) 7
(ensures (A m0 _m1 — modifies; output m0 m1 A 8
m1.[output] == 9
Seq.prefix len (Spec.chacha20 m0.[key] m0.[nonce]) counter))) = 10

push_frame (); 11 {
let state = Buffer.create Oul 32ul in 12
let block = Buffer.sub state 16ul 16ul in 13
chacha20_init block key nonce counter; 14
chacha20_update output state len; 15

pop_frame () 16 }

1 void chacha20 (

uint32_t len,
uint8_t ~output,
uint8_t ~key,
uint8_t =nonce,
uint32_t counter)

uint32_t state[32] ={0 };

uint32_t «block = state + 16;
chacha20_init(block, key, nonce, counter);
chacha20_update(output, state, len);

Fig. 2. A snippet from ChaCha20 in Low™ (left) and its C compilation (right)

https://arxiv.org/pdf/1703.00053.pdf



Conclusions

 Open question of maintenance
 F*is “living” language
 How to verify changes to the generated code?

 Promising approach, automation helps produce
consistent results



References

HACL*: A Verified Modern Cryptographic Library:
https://eprint.iacr.org/2017/536.pdf

Verified Low Level Programming Embedded in F*:
https://arxiv.org/pdf/1703.00053.pdf

Implementing and Proving the TLS 1.3 Record Layer:
https://eprint.iacr.org/2016/1178.pdf

Dependent Types and Multi-monadic Effects in F*:
https://www.fstar-lang.org/papers/mumon/paper.pdf



https://eprint.iacr.org/2017/536.pdf
https://arxiv.org/pdf/1703.00053.pdf
https://eprint.iacr.org/2016/1178.pdf
https://www.fstar-lang.org/papers/mumon/paper.pdf

