
Survey of Verified
Cryptography

CSCI-762 / Tom Arnold

Verified Cryptography
• Using tools to apply cryptography and prove that the

implementation is correct

• Assuming the algorithms and protocols are secure,
there are still many challenges in implementing them

• Memory Safety

• Functional Correctness

• Side Channel Resistance

Memory Safety
• High performance code usually written in memory unsafe

languages (C/C++).

• Vulnerabilities can allow attacker can access arbitrary memory.

• OpenSSL Heartbleed - Heartbeat request returning
uninitialized memory to client, allowing client (slow) read
access to memory to hunt for private keys and other secrets

• Managed languages like Java solve this but have worse
performance, complex implementation, unusable for
embedded/legacy code bases

Functional Correctness
• Specification usually given as IETF (Internet Task Force)

RFC document

• Turn spec into code, does it still match spec?

• Optimize code, does it still match spec?

• Exhaustive test suite not trivial

• Property based testing

• Proof assistants

Side-channel Resistance
• Attacker can determine information by observing

runtime, CPU usage, power usage, etc

• Can be caused by optimizations in code, e.g. shortcut
multiplication when operand is zero

• Can be caused by arch level (CPU/memory)
optimizations like branch prediction and cache

• Secret independence - Don’t allow optimizations/
shortcuts based on secret values

FStar (F*) Programming
Language

• ML-based programming language from INRIA and Microsoft
Research

• Features: refinement types, dependent types, proof assistant

• Pre-post conditions on functions that the compiler can use
to prove the code is correct

• Compiles to OCaml/F#

• Low* dialect compiles to C

• High level verification for low-level code

Low*
• Executable specifications (proofs) written in high-level

F*, operations written in Low* dialect

• No recursive data structures, no dynamic allocation,
bounded heaps (region based memory management)

• Low* compiled to C for inclusion in other software or
manual verification

• Use the powerful type system to enforce memory
safety and secret independence in generated code

Implementation
• Implement algorithm in high-level F* code

• This is the executable specification

• No fancy stuff here, stay close to RFC

• Implement algorithm in low-level F* code

• Optimizations happen here, e.g. vectorization

• Low-level implementation linked to specification
through post-conditions

Refinement/Dependent
Types

• Adding constraints to a type, e.g.

• x: uint32 - x is unsigned 32bit int

• x: uint32 { 1 <= x <= 10 } - x is unsigned 32bit int between 1 and 10

• The constraints can be relative to other types, e.g. length < 10 and
buffer size = length

• Checks performed at compile time

https://eprint.iacr.org/2016/1178.pdf

Heap Model
• Heap divided into regions; regions can be subdivided

• Prevents memory corruption and simplifies verification

• Code works with fixed-sized buffers

https://www.fstar-lang.org/papers/mumon/paper.pdf

Stack Model
• Functions that only allocate on the stack can’t leak

memory

• Memory allocated on stack freed when stack frame
popped

• Functions can be annotated that they only allocate on
the stack (and not heap)

Secure Integers
• Only constant time operations allowed

• If operation time varies, could reveal information to
attacker

• Avoid common optimizations that would make
operations variable-time

• Masked (bitwise) equality to prevent CPU branch
prediction

HACL*
• Library of verified cryptography primitives written in F*

• Stream ciphers: ChaCha20, Salsa20

• Hashing: SHA-2

• Signature: Ed25519

• Authentication: Poly1305, HMAC-SHA-2

• Authenticated crypto: ChaCha20-Poly1305

• Performance between OpenSSL C and ASM

• Proof-to-code ratio 2:1

Example - ChaCha20

https://arxiv.org/pdf/1703.00053.pdf

let blocklen = 64;

Conclusions
• Open question of maintenance

• F* is “living” language

• How to verify changes to the generated code?

• Promising approach, automation helps produce
consistent results

References
• HACL*: A Verified Modern Cryptographic Library:

https://eprint.iacr.org/2017/536.pdf

• Verified Low Level Programming Embedded in F*:
https://arxiv.org/pdf/1703.00053.pdf

• Implementing and Proving the TLS 1.3 Record Layer:
https://eprint.iacr.org/2016/1178.pdf

• Dependent Types and Multi-monadic Effects in F*:
https://www.fstar-lang.org/papers/mumon/paper.pdf

https://eprint.iacr.org/2017/536.pdf
https://arxiv.org/pdf/1703.00053.pdf
https://eprint.iacr.org/2016/1178.pdf
https://www.fstar-lang.org/papers/mumon/paper.pdf

