Survey of Verified
Cryptography

CSCI-762 / Tom Arnold



Verified Cryptography

e Using tools to apply cryptography and prove that the
Implementation Is correct

e Tricky implementation detalls

 Assumptions: algorithm is correct, cryptographic
primitives can be verified and then built on



Memory Safety

* High performance code usually written in memory unsafe
languages (C/C+4+).

* Vulnerabilities can allow attacker can access arbitrary memory.

 OpenSSL Heartbleed - Heartbeat request returning
uninitialized memory to client, allowing client (slow) read
access to memory to hunt for private keys and other secrets

* Managed languages like Java solve this but have worse
performance, complex implementation, unusable for
embedded/legacy code bases



Functional Correctness

* Specification usually given as IETF (Internet Task Force)
RFC document

e Turn spec into code, does it still match spec?
* Optimize code, does it still match spec?

* Exhaustive test suite not trivial
* Property based testing

* Proof assistants



Side-channel Resistance

Attacker can determine information by observing
runtime, CPU usage, power usage, etc

Can be caused by optimizations in code, e.g. shortcut
multiplication when operand is zero

Can be caused by arch level (CPU/memory)
optimizations like branch prediction and cache

Secret independence - Don’t allow optimizations/
shortcuts based on secret values



FStar (F*) Programming

Language

ML-based programming language from INRIA and
Microsoft Research

Features: refinement types, dependent types, proof
assistant

Pre-post conditions on functions that the compiler can
use to prove the code is correct

Compiles to OCaml/F#

Low* dialect compiles to readable C code



F*/Low* Approach

 Executable specifications (proofs) written in high-level F*,
operations written in Low™ dialect

* No recursive data structures, no dynamic allocation, bounded
heaps (region based memory management)

 Low* compiled to C for inclusion in other software or manual
verification

 Use the powerful type system to enforce memory safety and
secret independence in generated code

* Abstract type for secret integers that only allows constant
time operations



1
2
3
4
3
6
7
8
9

10
11
12
13
14
15
16

Example - ChaCha20

let chacha20 1 void chacha20 (

(len: uint32{len < blocklen}) 2
(output: bytes{len = output.length}) 3
(key: keyBytes) 4
(nonce: nonceBytes{disjoint [output; key; nonce]}) 5
(counter: uint32) : Stack unit 6
(requires (A m0 — output € m0 A key € m0 A nonce € m0)) 7
(ensures (A m0 _m1 — modifies; output m0 m1 A 8
m1.[output] == 9
Seq.prefix len (Spec.chacha20 m0.[key] m0.[nonce]) counter))) = 10
push_frame (); 11 {
let state = Buffer.create Oul 32ul in 12
let block = Buffer.sub state 16ul 16ul in 13
chacha20_init block key nonce counter; 14
chacha20_update output state len; 15
pop_frame () 16 }

uint32_t len,
uint8_t ~output,
uint8_t ~key,
uint8_t =nonce,
uint32_t counter)

uint32_t state[32] ={0 };

uint32_t «block = state + 16;
chacha20_init(block, key, nonce, counter);
chacha20_update(output, state, len);

Fig. 2. A snippet from ChaCha20 in Low™ (left) and its C compilation (right)

https://arxiv.org/pdf/1703.00053.pdf



HACL*

* Library of verified cryptography primitives written in F*
e Stream ciphers: ChaCha20, Salsa20
* Hashing: SHA-2
* Signature: Ed25519
* Authentication: Poly1305, HMAC-SHA-2
* Authenticated crypto: ChaCha20-Poly1305
* Performance between OpenSSL C and ASM

 Proof-to-code ratio 2:1



References

e HACL*: A Verified Modern Cryptographic Library:
https://eprint.iacr.org/2017/536.pdf

e Verified Low Level Programming Embedded in F*;
https://arxiv.org/pdf/1703.00053.pdf



https://eprint.iacr.org/2017/536.pdf
https://arxiv.org/pdf/1703.00053.pdf

