
Survey of Verified 
Cryptography

CSCI-762 / Tom Arnold



Verified Cryptography
• Using tools to apply cryptography and prove that the 

implementation is correct 

• Tricky implementation details 

• Assumptions: algorithm is correct, cryptographic 
primitives can be verified and then built on



Memory Safety
• High performance code usually written in memory unsafe 

languages (C/C++). 

• Vulnerabilities can allow attacker can access arbitrary memory. 

• OpenSSL Heartbleed - Heartbeat request returning 
uninitialized memory to client, allowing client (slow) read 
access to memory to hunt for private keys and other secrets 

• Managed languages like Java solve this but have worse 
performance, complex implementation, unusable for 
embedded/legacy code bases



Functional Correctness
• Specification usually given as IETF (Internet Task Force) 

RFC document 

• Turn spec into code, does it still match spec? 

• Optimize code, does it still match spec? 

• Exhaustive test suite not trivial 

• Property based testing 

• Proof assistants



Side-channel Resistance
• Attacker can determine information by observing 

runtime, CPU usage, power usage, etc 

• Can be caused by optimizations in code, e.g. shortcut 
multiplication when operand is zero 

• Can be caused by arch level (CPU/memory) 
optimizations like branch prediction and cache 

• Secret independence - Don’t allow optimizations/
shortcuts based on secret values



FStar (F*) Programming 
Language

• ML-based programming language from INRIA and 
Microsoft Research 

• Features: refinement types, dependent types, proof 
assistant 

• Pre-post conditions on functions that the compiler can 
use to prove the code is correct 

• Compiles to OCaml/F# 

• Low* dialect compiles to readable C code



F*/Low* Approach
• Executable specifications (proofs) written in high-level F*, 

operations written in Low* dialect 

• No recursive data structures, no dynamic allocation, bounded 
heaps (region based memory management) 

• Low* compiled to C for inclusion in other software or manual 
verification 

• Use the powerful type system to enforce memory safety and 
secret independence in generated code 

• Abstract type for secret integers that only allows constant 
time operations



Example - ChaCha20

https://arxiv.org/pdf/1703.00053.pdf



HACL*
• Library of verified cryptography primitives written in F* 

• Stream ciphers: ChaCha20, Salsa20 

• Hashing: SHA-2 

• Signature: Ed25519 

• Authentication: Poly1305, HMAC-SHA-2 

• Authenticated crypto: ChaCha20-Poly1305 

• Performance between OpenSSL C and ASM 

• Proof-to-code ratio 2:1



References
• HACL*: A Verified Modern Cryptographic Library: 

https://eprint.iacr.org/2017/536.pdf 

• Verified Low Level Programming Embedded in F*: 
https://arxiv.org/pdf/1703.00053.pdf

https://eprint.iacr.org/2017/536.pdf
https://arxiv.org/pdf/1703.00053.pdf

