
Verified Post-Quantum Cryptography

Tom Arnold
tca4384@rit.edu

24 February 2021

Abstract

New cryptosystems are being developed
and standardized to resist attacks from quan-
tum computers. Formal verification can help
verify the correct implementation of these
systems. We present a study of formal
verification applied to the domain of post-
quantum cryptography by implementing the
McEliece cryptosystem in LiquidHaskell and
verifying it using refinement types.

1 Introduction

Widely used public key cryptosystems are vulern-
able to attacks from quantum computers. These
cryptosystems are based on one-way functions for
which there is no efficient solution to calculate
the inverse of the function; the security of the
system is built on this fact. Quantum computing
has introduced new algorithms which can efficiently
compute solutions to some of these problems. As
a result, cryptographers are working to implement
new cryptosystems based on problems that are not
efficiently solvable by quantum or digital computers
[1].

The McEliece cryptosystem is one such system
that dates back to the 70s when it was proposed by
Robert McEliece. The system is based on coding
theory and to break it an attacker would have to

solve the general decoding problem which is NP-
complete [5]. A modern variant of McEliece called
Classic McEliece is one of the finalists in the NIST
Post-Quantum standardization effort [2].

Formal verification can be used to prove the
absense of bugs in a way that automated or manual
testing cannot. Typically such verification is only
done for software which must be held to a high
standard. Cryptography is one such field where
even simple errors can have severe real-world
consequences [3].

In the following paper we show how a post-
quantum cryptosystem (McEliece) can be imple-
mented and formally verified using refinement
types with LiquidHaskell [4]. We also examine the
effort involved in performing such verification so as
to better understand the costs and benefits involved.

References

[1] Risse, T. (2011). How SAGE Helps To Implement
Goppa Codes and The McEliece Public Key
Crypto System.

[2] Computer Security Division. Post-quantum
cryptography: CSRC. Retrieved February 24,
2022, from https://csrc.nist.gov/Projects/post-
quantum-cryptography

1



[3] Jean-Karim Zinzindohoué, Karthikeyan
Bhargavan, Jonathan Protzenko, and Benjamin
Beurdouche. 2017. HACL*: A Verified Modern
Cryptographic Library. In Proceedings of
the 2017 ACM SIGSAC Conference on
Computer and Communications Security
(CCS ’17). Association for Computing
Machinery, New York, NY, USA, 1789–1806.
DOI:https://doi.org/10.1145/3133956.3134043

[4] Vazou, N., Seidel, E.L., Jhala, R., Vytiniotis, D.,
Peyton-jones, S. (2014). Refinement types for
Haskell. ICFP 2014.

[5] McEliece, R.J. (1978). A public key cryptosystem
based on algebraic coding theory.

2


