
RIT Computer Science • Capstone Report • 2215

Verified Post-Quantum Cryptography
Verifying The McEliece Cryptosystem With Refinement Types

Tom Arnold
Department of Computer Science

Golisano College of Computing and Information Sciences
Rochester Institute of Technology

Rochester, NY 14586
tca4384@rit.edu

Abstract
New cryptosystems are being developed and stan-

dardized to resist attacks from quantum computers; one
such cryptosystem is the McEliece cryptosystem which
owes its security to coding theory and binary Goppa
codes. Implementation of the McEliece cryptosystem
involves linear algebra, coding theory, and arithmetic
with polynomials of binary Galois field elements.

Cryptosystems are one class of software where the
absence of defects is highly desirable; this is where
formal verification is useful. Formal verification can
help prove mathematically the correct implementation of
these systems.

We present a study of formal verification applied
to the domain of post-quantum cryptography by im-
plementing the McEliece cryptosystem in LiquidHaskell
and verifying it using refinement types. This includes
all of the supporting mathematics required for the
cryptosystem including linear algebra, coding theory,
polynomial arithmetic, and binary Galois field arithmetic.
As part of this study we show that refinement types are
a useful tool for reducing the chance of security breaking
bugs during implementation of a cryptosystem.

I. Introduction

Widely used public key cryptosystems are vulnerable to
attacks from quantum computers. These cryptosystems are
based on one-way functions for which there is no efficient
solution to calculate the inverse of the function; the security
of the system is built on this fact. Quantum computing has
introduced new algorithms which can efficiently compute
solutions to some of these problems. As a result, cryptog-
raphers are working to implement new cryptosystems based
on problems that are not efficiently solvable by quantum or
digital computers [1].

The McEliece cryptosystem is one such system that dates
back to the 70s when it was proposed by Robert McEliece.
The system is based on coding theory and to break it an
attacker would have to solve the general decoding problem
which is NP-complete [6]. A modern variant of McEliece
called Classic McEliece is one of the finalists in the NIST
Post-Quantum standardization effort [3].

Formal verification can be used to prove the absence of
bugs in a way that automated or manual testing cannot.
Typically such verification is only done for software which
must be held to a high standard. Cryptography is one such

field where even simple errors can have severe real-world
consequences [4].

In the following paper we show how a post-quantum
cryptosystem (McEliece) can be implemented and formally
verified using refinement types with LiquidHaskell [5].
We also examine the effort involved in performing such
verification so as to better understand the costs and benefits
involved.

II. Post-Quantum Cryptography

Post-quantum cryptography is a new field of cryptography
focused on the creation of cryptosystems which are secure
despite the existence of quantum computers. Quantum
computers are able to natively execute quantum algorithms
which can solve some problems much more efficiently
than a classical computer could. This is a problem for
cryptography because public-key cryptography is built on
one-way functions, i.e. functions that are easy to compute
in one direction but difficult to compute the reverse of,
and for some problems there exist quantum algorithms that
break this assumption. One example of this concern is Shor’s
algorithm and the integer factoring problem which is used
by the famous RSA public-key cryptosystem.

Although large-scale quantum computers do not yet exist,
it seems likely that they will in the near future and replacing
our existing pre-quantum cryptosystems will take years.
Additionally anything encrypted today with pre-quantum
cryptography could be broken once someone is able to
develop a large-scale quantum computer. As a result of
these concerns, NIST is currently running a post-quantum
cryptography competition with the goal of standardizing
several post-quantum cryptosystems so that government and
industry can begin requiring and using them.

One of the cryptosystems being standardized by NIST is
Classic McEliece [12], a key-encapsulation mechanism (KEM)
built on the Niederreiter public-key cryptosystem which is
a variant of the original McEliece public-key cryptosystem
proposed by Robert McEliece in the 70s.

While the McEliece and Niederreiter schemes are quite old,
they are based on a problem (i.e. general decoding) which
does not have a quantum algorithm and is NP-complete,
therefore they are post-quantum safe. These systems have
not gotten much attention from cryptographers until recently

Rochester Institute of Technology 1 | P a g e

RIT Computer Science • Capstone Report • 2215

due to their large key sizes. Both systems use large matrices
of bits for their private and public keys, and while they
work with any linear code, binary Goppa codes are the only
ones that have proven to be secure. The primary difference
between the two systems is that Niederreiter uses a parity
check matrix instead of a generator matrix as its public key
and as a result the ciphertext is a syndrome vector instead of
a garbled codeword. An advantage of the Niederreiter system
is that the parity matrix can be represented in standard form
H = (I|M) which allows the key size to be halved. The
Niederreiter system can also be used for digital signatures
unlike the original McEliece system [9].

Because of their similarity with each other and given that
a modern post-quantum cryptosystem (Classic McEliece) is
based on one of them, the McEliece and Niederreiter schemes
are an accessible starting point for formal verification; they
are relatively simple but also relevant.

III. Verification Techniques

Formal verification can be used to prove the absence of
certain types of bugs in a program. This technique typically
uses some kind of theorem prover to mathematically prove
certain properties about a program. One way to apply
this technique is to integrate it into the type system of a
programming language in the form of refinement types.

Refinement types are a way to refine a type to consist
of more specific values. For example, suppose we have
a function f which accepts an integer parameter x and
performs a runtime assertion to check that the parameter
is even. Instead of doing this check at runtime we could
refine the type of x from integer to even integer, i.e. integers
divisible by two or x : {Int|x mod 2 = 0} which reads
as "x is an integer such that x is divisible by 2". More
complicated refinements are possible, including refining the
type of a parameter relative to another parameter, or refining
the return type of a function based on its inputs [13].

Haskell is a functional programming language with an
advanced type system. Haskell is typically used as a research
language for programming language theory. Code written
in Haskell is strongly-typed and the language provides
many features to make it convenient to work with this
system; for example Haskell allows developers to implement
custom number types by defining function to convert to/from
integers and to perform arithmetic. A plugin to Haskell
called LiquidHaskell provides refinement types in the form
of comment annotations that the plugin parses during
compilation. After parsing the code, LiquidHaskell generates
constraints and invokes the Z3 theorem prover to determine
if the constraints are satisfiable; if they are not then this
usually indicates a flaw in the program logic and an error
message is returned to the developer. It is important to
note that the LiquidHaskell annotations are just annotations
and therefore only affect code being compiled with the
LiquidHaskell plugin; they do not affect the generated code
or the runtime of the program at all, nor are they checked

in interpreted mode when using the GHCi REPL (read-eval-
print loop) [5].

In the next sections we will discuss in detail what
refinement types can be used for.

A. Size-Aware API
When working with vectors and matrices one often must

be aware of their dimensions so as to avoid accessing an
element outside of the bounds of the data structure. Typically
these bounds checks are performed at runtime but refinement
types allow them to be lifted into compile time checks. This
works by tracking the size of the data structure at the type
level.

Tracking the size of the data at the type level has several
requirements. First we must define a measure which is a
function that can be converted into first-order logic and
can be used to determine a size. For a list we use a
simple recursive function size which counts the elements
in the list. We then annotate this with a LiquidHaskell
annotation {−@ measure size @−} stating that the function size is
a measure. Now we use another LiquidHaskell annotation
{−@ type ListN a N = {v: List a | size v = N} @−} to define a type alias
for a list of size N ; this reads as "List of some type such that
the size of the list is N."

This technique provides us with several tools and respon-
sibilities. First, it allows us to write functions that take a list
and a index and verify (at compile time) that the index is in-
bounds simply by writing a refinement that states that the
index is a natural number that is less than the size of the
list. It also allows us to write functions that take multiple
lists of the same size, e.g. to zip two lists, and the size check
is performed at compile time. This can be extended to other
data types as well, for example if we represent a matrix as a
list of lists then this gives us a way to check at compile time
that two matrices have compatible dimensions when adding
or multiplying them [5].

The burden of this technique is that all code dealing with
these lists must be "size-aware", i.e. a function that transforms
a list of size N must be annotated to return a list of size
N, and any code within the function must be verifiable by
LiquidHaskell to preserve the size of the list.

B. Termination Checking
When writing recursive (or looping) code there is a chance

that the program will loop endlessly if the algorithm is
implemented incorrectly or if the parameters are invalid.
Refinement types can be used to verify that a recursive
function always terminates. To do this one uses a termination
measure, which similar to a measure used to represent the
size of a data structure can be used to show that a parameter
or combination of parameters is decreasing towards the base
case of the recursion. This can be used by LiquidHaskell to
perform a proof-by-induction that the function terminates.

C. Derived Constraints
An useful property of refinement types is that their effects

permeate the code-base. LiquidHaskell can infer refinements

Rochester Institute of Technology 2 | P a g e

RIT Computer Science • Capstone Report • 2215

similar to how Haskell infers types. This means that the
programmer typically only has to annotate pre and post
conditions on functions and data types and LiquidHaskell is
able to "fill in" the details in between. The takeaway is that
refinement types are easy to use and are not overly verbose.

IV. Implementation

Having discussed refinement types, we will now dive into
implementing and verifying the McEliece and Niederreiter
post-quantum cryptosystems in Haskell by presenting select
parts of the implementation. The full source-code is available
at https://bitbucket.org/Tom9729/csci788/src/master/ and can
be compiled using the Haskell Tool Stack at https://www.
haskellstack.org/.

A. Support Code

Many libraries exist to perform matrix and Galois field
math in Haskell, but none of them are verified with
refinement types. While LiquidHaskell provides a mechanism
to introduce refinements to an external library, for this
project we chose to simply re-implement the required math
for the McEliece and Niederreiter schemes.

1) Matrices: The McEliece and Niederreiter schemes use
matrices and vectors for their keys, plaintext, and ciphertexts.
In this project we implemented a simple linear algebra
package consisting of matrices, vectors, and several useful
operations, and then verified it using refinement types.

First we present the data structure for our matrices in
Figure 1. We represent matrices as a count of rows and
columns, and a vector of vectors. We use refinements to
say that the rows and columns must be positive non-zero
integers (Pos being a type alias for v :{Nat | v > 0}, it does not
make sense to have a matrix with zero rows/columns) and
that the number of elements in the row and column vectors
match the number of rows and columns in the matrix. We
also define a type alias MatrixN for a matrix with R rows
and C columns.

{ −@ d a t a Mat r ix a = M { mRow : : Pos
, mCol : : Pos
, mEl t s : : VectorN (VectorN a mCol)

mRow } @− }
{ −@ p r e d i c a t e Dims M R C = mRow M = R && mCol M = C @− }
{ −@ type MatrixN a R C = { v : Mat r ix a | Dims v R C } @− }

Fig. 1. Matrix type.

Armed with our refined matrix type we now proceed to
do something useful. In Figure 2 we present a function that
appends the columns from one matrix to another. Because
this operation only makes sense for matrices with the same
number of rows we start with a refinement on the second
parameter stating that it has the same number of rows as
the first parameter. This ensures that if the function is called
with matrices with different numbers of rows then it will be
a compile error. This is a pre-condition refinement.

To ensure that the output from the function is of a known
size we create a post-condition refinement stating that the
number of rows of the output match that of the first input
(given that both inputs have the same number of rows it
would be equally true to match the second input), and that
the number of columns of the output equals the sum of the
number of columns from the inputs, e.g. if we append a 3x2
and a 3x1 matrix we would get a 3x3 matrix.

{ −@ matAppend : : m: Mat r ix a
−> n : { Mat r ix a | mRow m = mRow n }
−> o : { Mat r ix a | mRow o = mRow m && mCol o ←↩

= mCol m + mCol n } @− }
matAppend m@ (M mr mc mrows) n@ (M _ nc nrows) =

M mr (mc + nc) $ vZipWith (\ mrow nrow −>
vConcat mrow nrow) mrows ←↩

nrows

Fig. 2. Appending two matrices.

2) Polynomials: The McEliece and Niederreiter schemes
use polynomials during the key generation and decryption
processes. In Figure 3 we present a type for a generic
univariate (single-variable) polynomial represented as a
vector of coefficients and a natural number as the degree
of the polynomial. We setup a simple refinement stating
that there are one more coefficients than the degree, so
a degree zero polynomial has one coefficient. Note that a
empty coefficient list is impossible because a negative degree
polynomial is unrepresentable.

{ −@ d a t a Po ly a = P { pDeg : : Nat
, pCoefs : : VectorN a { pDeg + 1 }
} @− }

{ −@ type PolyN a N = { p : Po ly a | pDeg p = N} @− }

Fig. 3. Polynomials as vectors of coefficients.

In Figure 4 we present a function that accesses one of
the coefficients from a polynomial in a typesafe manner.
The function takes a polynomial p and index i and has a
refinement that requires the index to be positive and less
than the size of the coefficients vector.

{ −@ pCoef : : (Num a) => p : Po ly a
−> i : { Nat | i <= pDeg p } −> a @− }

pCoef : : (Num a) => Poly a −> I n t −> a
pCoef p@ (P d ps) i = vGet ps i

Fig. 4. Accessing a polynomial coefficient safely.

3) Binary Galois Fields: Key generation and decryption
for the McEliece and Niederreiter schemes uses polynomials
of binary Galois field elements; i.e. the coefficients of the
polynomials are essentially polynomials themselves. Thus
we implemented binary Galois fields as a special case of
polynomial, extending functionality as necessary.

Rochester Institute of Technology 3 | P a g e

https://bitbucket.org/Tom9729/csci788/src/master/
https://www.haskellstack.org/
https://www.haskellstack.org/

RIT Computer Science • Capstone Report • 2215

Fields are represented by a characteristic polynomial, and
only binary fields are supported. The field polynomial is a
polynomial of bits and field elements consist of a reference
to the field polynomial as well as another polynomial of bits
representing the element.

Addition and subtraction are implemented as a bitwise
XOR. Multiplication is inherited from the polynomial
package except with an extra step to reduce by the field
polynomial to keep the result valid. Division is implemented
as multiplication by the inverse, found by performing EEA
with the field polynomial.

type GF2Poly = Poly Bit

{ −@ d a t a GF2Element =
E { e F i e l d : : f : { GF2Poly | f /= 0 }

, ePo ly : : GF2Poly
} @− }

Fig. 5. Binary Galois fields as polynomials.

Figure 6 shows our implementation of binary Galois field
reduction, a process which reduces field elements by reducing
them by the field polynomial until they are of a lesser
degree. At each iteration we pad the field polynomial to
the right with zeroes until it is of the same degree as the
field element, then we add them which performs an XOR
operation on their binary coefficients. Because a polynomial
of non-zero degree must have a non-zero leading coefficient,
this procedure must result in a smaller polynomial, and thus
the first parameter to our function is decreasing and we have
proved termination.

Here we are confronted with our first failing in the
pursuit of well-verified code. We must show that the degree
of a polynomial of bits decreases when added to another
polynomial of bits of the same degree, and to do this we must
create an invariant that states that the leading coefficient
of a non-zero degree polynomial is non-zero. Unfortunately
we were unable to determine how to do this. The reader
should note that this was likely more of a limitation of our
understanding than one of LiquidHaskell.

{ −@ reduceGF2 : : p : Po ly a −> f : Po ly a −> Poly a @− }
{ −@ l a z y reduceGF2 @− }
reduceGF2 p f@ (P d v) =

l e t delta = pDeg p − pDeg f
i n

i f delta < 0 | | p == 0 | | f == 1
then p
e l s e

l e t fd ' = pDeg p
f ' = P fd ' $ vExtendRight v $ fd ' + 1

i n reduceGF2 (p + f ') f

Fig. 6. Binary Galois field reduction.

4) Haskell Typeclasses: Haskell has a feature called type-
classes which allows code to be written using generic types;

this is similar to the concept of interfaces in Java [7]. A
typeclass defines a set of functions that can be called on
implementations of that type, and Haskell defines many
standard typeclasses. Of interest to us are two: Num and
Integral which define basic arithmetic and whole-number
division respectively [8]. For this project we implemented
these typeclasses for polynomials (Figure 7) and Galois fields,
allowing us to write generic implementations of algorithms
such as the Extended Euclid Algorithm that operated on both
integers and polynomials of field elements. This demonstrates
one appeal of using Haskell, which is writing terse and
reusable code.

One of the challenges with implementing typeclasses for
something like a polynomial or Galois field element is how
to handle all of the methods in the class. For example, to
implement Num we are required to implement absolute
value, but what does that mean for a polynomial? For Galois
field elements if we implicitly convert an integer to a field
element how do we know what field that element should
belong to? While an incomplete implementation of a class
is possible it does leave strange edge cases that for now we
were unable to handle.

i n s t a n c e (Eq a , Num a) => (Num (Poly a)) where
(+) p q = addPoly p q
(−) p q = subPoly p q
(∗) p q = multPoly p q
f r o m I n t e g e r x = P 0 $ V 1 [f r o m I n t e g e r x]

i n s t a n c e (I n t e g r a l a) => I n t e g r a l (Poly a) where
quotRem a b = quoRemPoly a b

Fig. 7. Implementing Num and Integral typeclasses for polynomials.

5) Extended Euclidean Algorithm (EEA): The Extended
Euclid Algorithm (also known as EEA) computes the greatest
common divisor d of two numbers and returns it as well
as the coefficients xy of Bezout’s identity such that d =
a× x+ b× y. This is typically used in cryptography to find
the multiplicative inverse of a Galois field element.

Implementation of the EEA in Haskell is a straightforward
conversion from textbook pseudocode iteration to recursion
[11]. Of note is that because of Haskell’s type system we are
able to implement the EEA once for numbers, polynomials,
and field elements. Here refinement types provide us with
two additional checks beyond what the Haskell type system
provides.

First we refine the second parameter to be non-zero
because we perform a division by it and that would result in
a division-by-zero runtime error. Second we refine the inner
recursive loop go to have a termination condition. As long as
b0 > r the remainder of b0/r is decreasing, and since r = 0
is our base case we have shown inductively that the function
will always terminate.

Rochester Institute of Technology 4 | P a g e

RIT Computer Science • Capstone Report • 2215

{ −@ e x t E u c l i d A l g : : (I n t e g r a l a)
=> a : a
−> b : { a | b /= 0 }
−> (a , a , a) @− }

extEuclidAlg a b =
l e t (q , r) = a `quotRem` b
i n

go 0 1 1 0 a b q r
where

{ −@ go : : (I n t e g r a l a)
=> t 0 : a −> t : a −> s0 : a −> s : a −> a0 : a −> b0 : a ←↩

−> q : a
−> r : { a | b0 > r }
−> (a , a , a) / [r] @− }

go t0 t s0 s a0 b0 q r =
i f r == 0 then (b0 , s , t)
e l s e

l e t t ' = t0 − q ∗ t
s ' = s0 − q ∗ s
(q ' , r ') = b0 `quotRem` r

i n
go t t ' s s ' b0 r q ' r '

Fig. 8. Extended Euclid Algorithm.

B. Patterson’s Algorithm

Patterson’s algorithm is used to decode Goppa encoded
messages with up to t errors. The high-level implementation
of this is somewhat straightforward but it consists of several
helper functions, and the mathematics are best explained by
other papers (see [1]).

First we implemented a modified Extended Euclid Algo-
rithm as goppaExtEuclidAlg [10]. This version operates on
polynomials and returns when the degree of the polynomials
reaches a certain point. Unlike our straightforward imple-
mentation of the EEA this one happens to not require any
explicit refinement annotations for LiquidHaskell to verify
that it terminates.

goppaExtEuclidAlg a b = go b a 0 1 1 0
where

deg = pDeg a
go 0 lastr _ lastu _ lastv = (lastr , lastu , lastv)
go r lastr u lastu v lastv =

l e t (lastr ' , (q , r ')) = (r , lastr `quotRem` r)
(u ' , lastu ') = (lastu − q ∗ u , u)
(v ' , lastv ') = (lastv − q ∗ v , v)

i n
i f pDeg u ' <= (deg − 1) `quot ` 2 && pDeg r ' <= ←↩

deg `quot ` 2
then (lastu ' , lastr ' , lastv ')
e l s e go r ' lastr ' u ' lastu ' v ' lastv '

Fig. 9. Modified Extended Euclid Algorithm.

Next we implemented a procedure goppaSplit to split
a polynomial into even and odd coefficients as required
for Patterson’s algorithm. One thing to note is that if we
split a zero degree polynomial the function still satisfies the
invariant that a polynomial must have one coefficient by
adding a zero coefficient.

goppaSplit (P d (V n xs)) = (p0 , p1)
where

p0 = P (nEvens − 1) $ V nEvens evens '
p1 = P (nOdds − 1) $ V nOdds odds '

{ −@ evens ' : : L i s tGE GF2Element 1 @− }
(evens , odds) = altList $ r e v e r s e ' $ map ' sqrtGF2 xs
evens ' = i f size evens == 0 then [0] e l s e evens
odds ' = i f size odds == 0 then [0] e l s e odds

nEvens = size evens '
nOdds = size odds '

Fig. 10. Splitting a polynomial into even/odd coefficients.

Next we implement a procedure goppaInverse to find the
inverse of a polynomial modulo the Goppa polynomial.

{ −@ g o p p a I n v e r s e : : p : Po ly GF2Element
−> g : { Po ly GF2Element | g /= 0 }
−> Poly GF2Element

@− }
goppaInverse p 0 = 0
goppaInverse p g = u `mod` g

where
(d , u , v) = extEuclidAlg p g

Fig. 11. Polynomial inverse modulo the Goppa polynomial.

Now we have everything we need to implement Pat-
terson’s algorithm. This is used during McEliece and
Niederreiter decryption to find the error locator polynomial
which is used to decode the ciphertext. The only refinement
we need to specify is that the Goppa polynomial must be
non-zero.

{ −@ p a t t e r s o n s A l g o r i t h m : : x : _
−> g : { _ | g /= 0 }
−> s : _ −> _ @− }

pattersonsAlgorithm x g syndrome = u^2 + x ∗ v^2
where

(g0 , g1) = goppaSplit g
w = g0 ∗ goppaInverse g1 g
t = polyInvMod syndrome g
(t0 , t1) = goppaSplit $ t + x
r = t0 + w ∗ t1
(_ , u , v) = goppaExtEuclidAlg g r

Fig. 12. Patterson’s algorithm.

C. McEliece Cryptosystem
We now present a toy example of the McEliece scheme

using Goppa codes.
1) Key Setup: First we must define some private parame-

ters used during key generation and decryption. f is the field
polynomial, g is the Goppa polynomial, z and x are primitive
elements used to generate the code.
codeLocators is used to generate the private key

matrix and syndLocators (referred to by Roering as
SyndromeCalculator) is used during the decryption process
to convert the ciphertext to a polynomial.

Rochester Institute of Technology 5 | P a g e

RIT Computer Science • Capstone Report • 2215

−− (z ^3 + z + 1)
f = P 3 $ V 4 [1 , 0 , 1 , 1]

−− X^2 + X + (1)
g = P 2 $ V 3 [E f $ P 0 $ V 1 [1] , E f $ P 0 $ V 1 [1] , ←↩

E f $ P 0 $ V 1 [1]]

−− (z)
z = E f $ P 1 $ V 2 [1 , 0]

−− X
x = P 1 $ V 2 [E f $ P 0 $ V 1 [1] , 0]

−− [() , (1) , (z) , (z ^ 2) , (z + 1) , (z ^2 + z) , (z ^2 + z + 1) , (z ^2←↩
+ 1)]

codeLocators = (z ∗ 0) : (1 + z ∗ 0) : (map ' (\ i −> z^i) $ nseq 6)

−− | X + (1) X (z ^ 2) ∗X + (z ^2 + z + 1) (z ^2 + z) ∗X + (z +←↩
1) (z ^ 2) ∗X + (z + 1) (z) ∗X + (z ^2 + 1) (z) ∗X + (z ^2 ←↩

+ z + 1) (z ^2 + z) ∗X + (z ^2 + 1) |
syndLocators = V 8 $ [polyInvMod (x − (p c)) g | c <− ←↩

codeLocators]
where

p c = P 0 $ V 1 [c]

Fig. 13. McEliece private parameters.

We now present the private and public keys for this
example. These were generated by SAGE [14] code from the
above parameters (see [1] and [2]). The private key consists
of generator derived from the code locators, scrambler
a random matrix, and permutation a randomly shuffled
identity matrix. Note that decryption uses the inverses of
these matrices which is computed by the function bitMatInv
which performs elementary row operations to find the
inverse of the matrix; also note that because the generator
matrix is non-square we use the right-inverse. The public
key generator′ consists of the product of the private key
matrices.

generator = M 2 8 $ V 2
[

V 8 [1 , 1 , 0 , 0 , 1 , 0 , 1 , 1]
, V 8 [0 , 0 , 1 , 1 , 1 , 1 , 1 , 1]
]

scrambler = M 2 2 $ V 2
[

V 2 [0 , 1]
, V 2 [1 , 0]
]

permutation = M 8 8 $ V 8
[

V 8 [0 , 1 , 0 , 0 , 0 , 0 , 0 , 0]
, V 8 [0 , 0 , 0 , 1 , 0 , 0 , 0 , 0]
, V 8 [0 , 0 , 0 , 0 , 0 , 0 , 1 , 0]
, V 8 [1 , 0 , 0 , 0 , 0 , 0 , 0 , 0]
, V 8 [0 , 0 , 1 , 0 , 0 , 0 , 0 , 0]
, V 8 [0 , 0 , 0 , 0 , 0 , 1 , 0 , 0]
, V 8 [0 , 0 , 0 , 0 , 1 , 0 , 0 , 0]
, V 8 [0 , 0 , 0 , 0 , 0 , 0 , 0 , 1]
]

−− | 1 0 1 0 1 1 1 1 |
−− | 0 1 1 1 1 0 0 1 |
generator ' = (scrambler `matProduct` generator) `←↩

matProduct` permutation

Fig. 14. McEliece public and private keys.

2) Encryption: The encryption process for the McEliece
scheme is fairly straightforward. The plaintext message is
encoded as a bit string and a random error vector of
weight 2 (i.e. Goppa polynomial degree) is added to it.
Note that this random error is what makes the McEliece
scheme probabilistic, a property which is not shared with the
Niederreiter scheme. The result is multiplied by the public
key matrix to obtain the ciphertext.

ptext = V 2 [1 , 0]
err = V 8 [0 , 0 , 0 , 0 , 1 , 0 , 1 , 0]

−− | 1 0 1 0 0 1 0 1 |
ctext = (ptextM `matProduct` generator ') `matAdd` errM

where
ptextM = matFromVec ptext
errM = matFromVec err

Fig. 15. McEliece encryption.

3) Decryption: Decryption for the McEliece scheme is a
little more involved than encryption. First we use the inverse
of the permutation matrix to obtain a modified ciphertext,
then we use the syndrome locators to create the syndrome
polynomial. Once we have that we can use Patterson’s
algorithm to find the error locator polynomial. By evaluating
the code locators in the error locator polynomial we can
find and remove the error from the ciphertext. Next we
use the right-inverse of the generator matrix to remove the
parity bits (transforming from codeword back to message)
and finally we use the inverse of the scrambler matrix to
retrieve the original plaintext message.

−− | 0 0 0 1 1 1 0 1 |
ctext ' = ctext `matProduct` permutationInv

−− (z ^2 + z) ∗X
syndrome = dotProduct syndLocators ctext ' '

where
ctext ' ' = for (matToVec ctext ') (\ x −> P 0 $ V 1 [E f←↩

$ P 0 $ V 1 [x]])

−− (z) ∗X^2 + X + (1)
errorLocator = pattersonsAlgorithm x g syndrome

−− | 0 0 1 0 0 0 1 0 |
ctextError = V 8 $ map ' (\ c −> i f 0 == evalPoly ←↩

errorLocator c then 1 e l s e 0)
codeLocators

−− | 0 0 1 1 1 1 1 1 |
ctext ' ' ' = ctext ' `matAdd` (matFromVec ctextError)

−− | 0 1 |
ctext ' ' ' ' = ctext ' ' ' `matProduct` generatorInv

−− | 1 0 |
ptext ' = ctext ' ' ' ' `matProduct` scramblerInv

Fig. 16. McEliece decryption.

D. Niederreiter Cryptosystem
Next we look at a toy example of the Niederreiter scheme

using Goppa codes. This is similar to the McEliece scheme

Rochester Institute of Technology 6 | P a g e

RIT Computer Science • Capstone Report • 2215

except that we use the parity check matrix instead of the
generator matrix which means that our ciphertext is actually
the syndrome instead of a codeword with random error. This
property is what makes Niederreiter deterministic and thus
suitable for use as a digital signature scheme (although we
do not implement that here).

1) Key Setup: Similar to the McEliece scheme we first
start with our key parameters. Note that in this example the
syndrome locators are not generated; during the decryption
process we use a different technique to compute the
syndrome polynomial from the ciphertext.

−− (z ^3 + z ^2 + 1)
f = P 3 $ V 4 [1 , 1 , 0 , 1]

−− X^2 + X + (1)
g = P 2 $ V 3 [E f $ P 0 $ V 1 [1] , E f $ P 0 $ V 1 [1] , ←↩

E f $ P 0 $ V 1 [1]]

−− (z)
z = E f $ P 1 $ V 2 [1 , 0]

−− X
x = P 1 $ V 2 [E f $ P 0 $ V 1 [1] , 0]

−− [() , (1) , (z ^ 2) , (z ^2 + z + 1) , (z ^2 + z) , (z) , (z ^2 + 1) , (z←↩
+ 1)]

codeLocators : : L i s t GF2Element
codeLocators = (p ∗ 0) : (1 + p ∗ 0) : (map ' (\ i −> p^i) $ nseq 6)

where
p = z^2

Fig. 17. Niederreiter private parameters.

Next we present our private and public key matrices in
Figure 18. Like the McEliece example these were generated
by SAGE code from the above parameters. Note that here we
use the parity check matrix parity in place of the generator
matrix.

2) Encryption: Niederreiter encryption is slightly simpler
looking than McEliece encryption. Notice that there is no
error vector added to the plaintext; in the Niederreiter
scheme the plaintext is the error. This means that although
(in this example) the plaintext string is of length 8 it can only
have weight 2 (i.e. the degree of the Goppa polynomial).

ptext = V 8 [0 , 0 , 1 , 0 , 0 , 0 , 1 , 0]

−− | 1 1 1 0 1 1 |
ctext = t r a n s p o s e $ parity ' `matProduct` (t r a n s p o s e $ ←↩

matFromVec ptext)

Fig. 19. Niederreiter encryption.

3) Decryption: Decryption in the Niederreiter scheme is
similar to the McEliece scheme, but note that we use the
inverses of the scrambler and permutation matrices in a
different order here. Also there is an implicit process required
to decode the message from the plaintext once decryption is
complete.

parity = M 6 8 $ V 6
[

V 8 [1 , 0 , 0 , 1 , 0 , 0 , 0 , 1]
, V 8 [0 , 0 , 0 , 1 , 0 , 1 , 1 , 1]
, V 8 [0 , 0 , 1 , 1 , 1 , 0 , 0 , 1]
, V 8 [1 , 1 , 0 , 1 , 1 , 1 , 0 , 1]
, V 8 [0 , 0 , 1 , 1 , 1 , 0 , 1 , 0]
, V 8 [0 , 0 , 1 , 0 , 0 , 1 , 1 , 1]
]

scrambler = M 6 6 $ V 6
[

V 6 [1 , 1 , 0 , 1 , 1 , 0]
, V 6 [1 , 0 , 1 , 1 , 1 , 1]
, V 6 [0 , 0 , 1 , 0 , 1 , 1]
, V 6 [0 , 0 , 1 , 1 , 0 , 0]
, V 6 [1 , 1 , 0 , 0 , 0 , 0]
, V 6 [1 , 1 , 1 , 0 , 0 , 0]
]

permutation = M 8 8 $ V 8
[

V 8 [0 , 0 , 0 , 0 , 0 , 0 , 0 , 1]
, V 8 [0 , 0 , 0 , 0 , 0 , 0 , 1 , 0]
, V 8 [0 , 0 , 0 , 0 , 0 , 1 , 0 , 0]
, V 8 [0 , 1 , 0 , 0 , 0 , 0 , 0 , 0]
, V 8 [0 , 0 , 0 , 1 , 0 , 0 , 0 , 0]
, V 8 [0 , 0 , 1 , 0 , 0 , 0 , 0 , 0]
, V 8 [0 , 0 , 0 , 0 , 1 , 0 , 0 , 0]
, V 8 [1 , 0 , 0 , 0 , 0 , 0 , 0 , 0]
]

−− | 1 0 0 0 0 1 1 0 |
−− | 0 0 0 1 0 1 1 0 |
−− | 0 0 1 0 0 1 0 0 |
−− | 0 0 1 0 0 1 1 1 |
−− | 0 0 1 0 1 0 0 1 |
−− | 1 1 1 1 1 1 0 1 |
parity ' = (scrambler `matProduct` parity) `matProduct` ←↩

permutation

Fig. 18. Niederreiter public and private keys.

−− | 0 1 0 0 0 1 |
ctext ' = t r a n s p o s e $ scramblerInv `matProduct` (t r a n s p o s e←↩

ctext)

−− (z ^ 2) ∗X + (z)
syndrome = goppaSyndromePoly (matToVec ctext ') f g

−− (z ^ 2) ∗X^2 + X + (z ^2 + 1)
errorLocator = pattersonsAlgorithm x g syndrome

−− | 0 1 0 0 0 1 0 0 |
ctextError = V 8 $ map ' (\ c −> i f 0 == evalPoly ←↩

errorLocator c then 1 e l s e 0) codeLocators

−− | 0 0 1 0 0 0 1 0 |
ptext ' = matToVec $ t r a n s p o s e $ permutationInv `←↩

matProduct` (t r a n s p o s e $ matFromVec ctextError)

Fig. 20. Niederreiter decryption.

V. Results

In this project we implemented the McEliece and Nieder-
reiter cryptosystems in Haskell and verified them with
refinement types using LiquidHaskell. This implementation
included implementing the supporting matrix and Galois
field math, as well as implementing variants of the Extended
Euclid algorithm and Patterson’s decoding algorithm. All of

Rochester Institute of Technology 7 | P a g e

RIT Computer Science • Capstone Report • 2215

the code written was verified with refinement types except
for binary Galois field reduction and polynomial division
which were not verified to terminate.

As part of this we implemented a size-aware API for
vectors and matrices which provides bounds checking and
prevents off-by-one errors.

During this project we found that refinement types
can eliminate certain classes of errors when implementing
cryptosystems with only a modest increase of in lines of
code as shown by Figure 21.

Fig. 21. Lines of code by component.

VI. Related Work & Acknowledgments

This project was inspired by MSR-INRIA’s Project
Everest which is implementing a formally verified TLS
stack (https://project-everest.github.io/). The linear algebra
package was based on the excellent LiquidHaskell tutorial
at https://ucsd-progsys.github.io/liquidhaskell-tutorial/
Tutorial_01_Introduction.html. Implementation of the
McEliece and Niederreiter schemes was made possible
through the use of the SAGE computer algebra system and by
referencing papers by Risse, Roering, Minihold, and a SAGE
implementation of McEliece by David Hu at https://github.
com/davidhoo1988/Code_Based_Cryptography_Python.

VII. Conclusion

Refinement types have been a useful tool for implementing
McEliece variants during this project. In many cases the
refinements were simply assertions that would normally be
checked at runtime, lifted into compile-time checks. Adding
refinements was generally a one-time development cost that
paid for itself when editing the code later. Combined with a
good test suite (this project used doctests) this strategy could
be used to build high-assurance systems.

The main challenge of working with refinement types was
proving properties about custom data types, e.g. proving
that dividing by a non-zero polynomial was safe, or proving
that adding binary field elements of the same degree
would always produce an element of a lower degree.
Refinements also slightly increased the compile time for the
project, although upgrading to the latest Z3 theorem prover
noticeably improved this.

Future work could consist of verifying that polynomial
division and binary Galois field reduction terminate. Ad-
ditionally it would be useful to implement and verify key
generation for the McEliece and Niederreiter schemes instead
of relying upon SAGE code.

References
[1] Risse, T. (2011). How SAGE Helps To Implement Goppa Codes and The

McEliece Public Key Crypto System. Hochschule Bremen, University of
Applied Sciences.

[2] Roering, Christopher, "Coding Theory-Based Cryptopraphy: McEliece
Cryptosystems in Sage" (2013). Honors Theses, 1963-2015. 17.
https://digitalcommons.csbsju.edu/honors_theses/17

[3] NIST Computer Security Division. Post-quantum cryptography: CSRC.
Retrieved February 24, 2022, from https://csrc.nist.gov/Projects/post-
quantum-cryptography

[4] Jean-Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko,
and Benjamin Beurdouche. 2017. HACL*: A Verified Modern Crypto-
graphic Library. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’17). Associa-
tion for Computing Machinery, New York, NY, USA, 1789–1806.
DOI:https://doi.org/10.1145/3133956.3134043

[5] Niki Vazou, Eric L. Seidel, and Ranjit Jhala. 2014. LiquidHaskell:
experience with refinement types in the real world. SIGPLAN Not. 49,
12 (December 2014), 39–51. University of California San Diego.

[6] McEliece, R.J. (1978). A public key cryptosystem based on algebraic
coding theory.

[7] Types and typeclasses. Types and Typeclasses - Learn You
a Haskell for Great Good!. Retrieved April 22, 2022, from
http://learnyouahaskell.com/types-and-typeclasses

[8] A Gentle Introduction to Haskell, Version 98. A gentle intro-
duction to Haskell: Numbers. Retrieved April 22, 2022, from
https://www.haskell.org/tutorial/numbers.html

[9] Pascal Véron. Code based cryptography and steganography. CAI 2013,
5th International Conference on Algebraic Informatics, Sep 2013,
Porquerolles, France. pp.9-46.

[10] Minihold, Matthias. “Linear Codes and Applications in Cryptography.”
(2013). Master’s Thesis, Vienna University of Technology.

[11] Stinson, D. R. (2019). Algorithm 6.2: Extended Euclid Algorithm.
Cryptograph: Theory and Practice (4th ed., pp. 191). CRC Press.

[12] Classic mceliece: Intro. Classic McEliece: Intro. Retrieved April 23, 2022,
from https://classic.mceliece.org/

[13] Jhala, R., Vazou, N.. (2020). Refinement Types: A Tutorial.
https://arxiv.org/pdf/2010.07763v1.pdf

[14] William A. Stein et al. Sage Mathematics Software (Version 9.0), The
Sage Development Team, 2020, http://www.sagemath.org.

Rochester Institute of Technology 8 | P a g e

https://project-everest.github.io/
https://ucsd-progsys.github.io/liquidhaskell-tutorial/Tutorial_01_Introduction.html
https://ucsd-progsys.github.io/liquidhaskell-tutorial/Tutorial_01_Introduction.html
https://github.com/davidhoo1988/Code_Based_Cryptography_Python
https://github.com/davidhoo1988/Code_Based_Cryptography_Python

	Introduction
	Post-Quantum Cryptography
	Verification Techniques
	Size-Aware API
	Termination Checking
	Derived Constraints

	Implementation
	Support Code
	Matrices
	Polynomials
	Binary Galois Fields
	Haskell Typeclasses
	Extended Euclidean Algorithm (EEA)

	Patterson's Algorithm
	McEliece Cryptosystem
	Key Setup
	Encryption
	Decryption

	Niederreiter Cryptosystem
	Key Setup
	Encryption
	Decryption

	Results
	Related Work & Acknowledgments
	Conclusion
	References

