
RIT Computer Science • Capstone Report • 2215

Verified Post-Quantum Cryptography
Verifying The McEliece Cryptosystem With Refinement Types

Tom Arnold
Department of Computer Science

Golisano College of Computing and Information Sciences
Rochester Institute of Technology

Rochester, NY 14586
tca4384@rit.edu

Abstract
New cryptosystems are being developed and stan-

dardized to resist attacks from quantum computers; one
such cryptosystem is the McEliece cryptosystem which
owes its security to coding theory and binary Goppa
codes. Implementation of the McEliece cryptosystem
involves linear algebra, coding theory, and arithmetic
with polynomials of binary Galois field elements.

Cryptosystems are one class of software where the
absence of defects is highly desirable; this is where
formal verification is useful. Formal verification can
help prove mathematically the correct implementation of
these systems.

We present a study of formal verification applied
to the domain of post-quantum cryptography by im-
plementing the McEliece cryptosystem in LiquidHaskell
and verifying it using refinement types. This includes
all of the supporting mathematics required for the
cryptosystem including linear algebra, coding theory,
polynomial arithmetic, and binary Galois field arithmetic.
As part of this study we show that refinement types are
a useful tool for reducing the chance of security breaking
bugs during implementation of a cryptosystem.

I. Introduction

Widely used public key cryptosystems are vulnerable to
attacks from quantum computers. These cryptosystems are
based on one-way functions for which there is no efficient
solution to calculate the inverse of the function; the security
of the system is built on this fact. Quantum computing has
introduced new algorithms which can efficiently compute
solutions to some of these problems. As a result, cryptog-
raphers are working to implement new cryptosystems based
on problems that are not efficiently solvable by quantum or
digital computers [1].

The McEliece cryptosystem is one such system that dates
back to the 70s when it was proposed by Robert McEliece.
The system is based on coding theory and to break it an
attacker would have to solve the general decoding problem
which is NP-complete [5]. A modern variant of McEliece
called Classic McEliece is one of the finalists in the NIST
Post-Quantum standardization effort [2].

Formal verification can be used to prove the absence of
bugs in a way that automated or manual testing cannot.
Typically such verification is only done for software which
must be held to a high standard. Cryptography is one such

field where even simple errors can have severe real-world
consequences [3].

In the following paper we show how a post-quantum
cryptosystem (McEliece) can be implemented and formally
verified using refinement types with LiquidHaskell [4].
We also examine the effort involved in performing such
verification so as to better understand the costs and benefits
involved.

II. Post-Quantum Cryptography

Post-quantum cryptography is a new field of cryptography
focused on the creation of cryptosystems which are secure
despite the existence of quantum computers. Quantum
computers are able to natively execute quantum algorithms
which can solve some problems much more efficiently
than a classical computer could. This is a problem for
cryptography because public-key cryptography is built on
one-way functions, i.e. functions that are easy to compute in
one direction but difficult to compute the reverse of, and for
some problems there exist quantum algorithms that break
this assumption. The obvious example of this concern is
Shor’s algorithm and the integer factoring problem which
is used by the famous RSA public-key cryptosystem.

Although large-scale quantum computers do not yet exist,
it seems likely that they will in the near future and replacing
our existing pre-quantum cryptosystems will take years.
Additionally anything encrypted today with pre-quantum
cryptography could be broken once someone is able to
develop a large-scale quantum computer. As a result of
these concerns, NIST is currently running a post-quantum
cryptography competition with the goal of standardizing
several post-quantum cryptosystems so that government and
industry can begin requiring and using them.

One of the cryptosystems being standardized by NIST
is Classic McEliece, a key-encapsulation mechanism (KEM)
built on the Niederreiter public-key cryptosystem which is
a variant of the original McEliece public-key cryptosystem
proposed by Robert McEliece in the 70s.

While the McEliece and Niederreiter schemes are quite old,
they are based on a problem (i.e. general decoding) which
does not have a quantum algorithm and is NP-complete,
therefore they are post-quantum safe. These systems have
not gotten much attention from cryptographers until recently

Rochester Institute of Technology 1 | P a g e

RIT Computer Science • Capstone Report • 2215

due to their large key sizes. Both systems use large matrices
of bits for their private and public keys, and while they work
with any linear code so far binary Goppa codes are the only
one that has proven to be secure. The primary difference
between the two systems is that Niederreiter uses a parity
check matrix instead of a generator matrix as its public key
and as a result the ciphertext is a syndrome vector instead of
a garbled codeword. An advantage of the Niederreiter system
is that the parity matrix can be represented in standard form
H = (I|M) which allows the key size to be halved. The
Niederreiter system can also be used for digital signatures
unlike the original McEliece system.

Because of their similarity with each other and given that
a modern post-quantum cryptosystem (Classic McEliece) is
based on one of them, the McEliece and Niederreiter schemes
are an accessible starting point for formal verification; they
are relatively simple but also relevant.

III. Verification Techniques

Formal verification can be used to prove the absence of
certain types of bugs in a program. This technique typically
uses some kind of theorem prover to mathematically prove
certain properties about a program. One way to apply
this technique is to integrate it into the type system of a
programming language in the form of refinement types.

Refinement types are a way to refine a type to consist
of more specific values. For example, suppose we have
a function f which accepts an integer parameter x and
performs a runtime assertion to check that the parameter
is even. Instead of doing this check at runtime we could
refine the type of x from integer to even integer, i.e. integers
divisible by two or x : {Int|x mod 2 = 0} which reads
as ”x is an integer such that x is divisible by 2”. More
complicated refinements are possible, including refining the
type of a parameter relative to another parameter, or refining
the return type of a function based on its inputs.

Haskell is a functional programming language with an
advanced type system. Haskell is typically used as a research
language for programming language theory. Code written
in Haskell is strongly-typed and the language provides
many features to make it convenient to work with this
system; for example Haskell allows developers to implement
custom number types by defining function to convert to/from
integers and to perform arithmetic. A plugin to Haskell
called Liquid Haskell provides refinement types in the form
of comment annotations that the plugin parses during
compilation. After parsing the code, Liquid Haskell generates
constraints and invokes the Z3 theorem prover to determine
if the constraints are satisfiable; if they are not then this
usually indicates a flaw in the program logic and an error
message is returned to the developer. In the next sections we
will discuss in detail what refinement types can be used for.

A. Static Types
B. Refinement Types
C. Size-Aware API
D. Termination Checking

IV. Implementation

Having discussed refinement types, we will now dive into
implementing and verifying the McEliece and Niederreiter
post-quantum cryptosystems in Haskell. The full source-
code is available at https://bitbucket.org/Tom9729/csci788/
src/master/ and can be compiled using the Haskell Tool Stack
https://www.haskellstack.org/.

A. Support Code
Many libraries exist to do matrix and Galois field math in

Haskell, but none of them are verified with refinement types.
While Liquid Haskell provides a mechanism to introduce
refinements to an external library, for this project we chose
to simply re-implement the required math for the McEliece
and Niederreiter schemes.
1) Matrices:
2) Binary Matrix Inversion:
3) Matrix Right-Inverse:
4) Polynomials:
5) Galois Fields:
6) Extended Euclidean Algorithm (EEA): The Extended

Euclid Algorithm (also known as EEA) computes the greatest
common divisor d of two numbers and returns it as well
as the coefficients xy of Bezout’s identity such that d =
a× x+ b× y. This is typically used in cryptography to find
the multiplicative inverse of a Galois field element.

Implementation of the EEA in Haskell is a straightforward
conversion from textbook pseudocode iteration to recursion.
Of note is that because of Haskell’s type system we are
able to implement the EEA once for numbers, polynomials,
and field elements! Here refinement types provide us with
two additional checks beyond what the Haskell type system
provides.

First we refine the second parameter to be non-zero
because we perform a division by it and that would result in
a division-by-zero runtime error. Second we refine the inner
recursive loop go to have a termination condition. As long as
b0 > r the remainder of b0/r is decreasing, and since r = 0
is our base case we have shown inductively that the function
will always terminate.

{−@ e x t E u c l i d A l g : : (I n t e g r a l a)
=> a : a
−> b :{ a | b /= 0}
−> (a , a , a) @−}

extEuclidAlg a b =
l e t (q , r) = a `quotRem` b
i n

go 0 1 1 0 a b q r
where
{−@ go : : (I n t e g r a l a)

=> t 0 : a −> t : a −> s0 : a −> s : a −> a0 : a −> b0 : a ←↩
−> q : a

−> r :{ a | b0 > r}
−> (a , a , a) / [r] @−}

Rochester Institute of Technology 2 | P a g e

https://bitbucket.org/Tom9729/csci788/src/master/
https://bitbucket.org/Tom9729/csci788/src/master/
https://www.haskellstack.org/

RIT Computer Science • Capstone Report • 2215

go t0 t s0 s a0 b0 q r =
i f r == 0 then (b0 , s , t)
e l s e

l e t t ' = t0 − q ∗ t
s ' = s0 − q ∗ s
(q ' , r ') = b0 `quotRem` r

i n
go t t ' s s ' b0 r q ' r '

7) Modified EEA:

B. McEliece Cryptosystem
1) Key Generation:
2) Encryption:
3) Decryption:

C. Niederreiter Cryptosystem
1) Key Generation:
2) Encryption:
3) Decryption:

V. Results

Implemented McEliece and Niederreiter cryptosystems in
Haskell and verified with refinement types. Matrix and
vector math including binary matrix inversion. Univariate
polynomial math and binary Galois fields. Extended Euclid
Algorithm. Patterson’s decoding algorithm for Goppa codes.
Toy examples of McEliece and Niederreiter encryption/de-
cryption. All code verified with refinement types except
for GF2 reduction and polynomial division which were not
verified to terminate. Size-aware API for vectors and matrices
provides bounds checking and prevents off-by-one errors.
Recursive functions guaranteed to terminate. Avoid divide
by zero by requiring non-zero parameters. Refinement types
can eliminate certain classes of errors with only a modest
increase of implementation complexity and are a useful tool
for cryptography.

VI. Related Work

This project was inspired by MSR-INRIA’s Project Everest
which is implementing a formally verified TLS stack
(https://project-everest.github.io/).

VII. Conclusion

Refinement types have been a useful tool for implementing
McEliece variants during this project. In many cases the
refinements were simply assertions that would normally be
checked at runtime, lifted into compile-time checks. Adding
refinements was generally a one-time development cost that
paid for itself when editing the code later. Combined with a
good test suite (this project used doctests) this strategy could
be used to build high-assurance systems.

The main challenge of working with refinement types was
proving properties about custom data types, e.g. proving
that dividing by a non-zero polynomial was safe, or proving
that adding binary field elements of the same degree
would always produce an element of a lower degree.
Refinements also slightly increased the compile time for the
project, although upgrading to the latest Z3 theorem prover
noticeably improved this.

References
[1] Risse, T. (2011). How SAGE Helps To Implement Goppa Codes and The

McEliece Public Key Crypto System.
[2] Computer Security Division. Post-quantum cryptography: CSRC. Re-

trieved February 24, 2022, from https://csrc.nist.gov/Projects/post-
quantum-cryptography

[3] Jean-Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko,
and Benjamin Beurdouche. 2017. HACL*: A Verified Modern Crypto-
graphic Library. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’17). Associa-
tion for Computing Machinery, New York, NY, USA, 1789–1806.
DOI:https://doi.org/10.1145/3133956.3134043

[4] Vazou, N., Seidel, E.L., Jhala, R., Vytiniotis, D., Peyton-jones, S. (2014).
Refinement types for Haskell. ICFP 2014.

[5] McEliece, R.J. (1978). A public key cryptosystem based on algebraic
coding theory.

Rochester Institute of Technology 3 | P a g e

	Introduction
	Post-Quantum Cryptography
	Verification Techniques
	Static Types
	Refinement Types
	Size-Aware API
	Termination Checking

	Implementation
	Support Code
	Matrices
	Binary Matrix Inversion
	Matrix Right-Inverse
	Polynomials
	Galois Fields
	Extended Euclidean Algorithm (EEA)
	Modified EEA

	McEliece Cryptosystem
	Key Generation
	Encryption
	Decryption

	Niederreiter Cryptosystem
	Key Generation
	Encryption
	Decryption

	Results
	Related Work
	Conclusion
	References

