
Verified Post-Quantum Cryptography

Tom Arnold
tca4384@rit.edu

28 February 2022

Abstract

New cryptosystems are being developed
and standardized to resist attacks from quan-
tum computers; one such cryptosystem is the
McEliece cryptosystem which owes its secu-
rity to coding theory and binary Goppa codes.
Implementation of the McEliece cryptosystem
involves linear algebra, coding theory, and
arithmetic with polynomials of binary Galois
field elements.

Cryptosystems are one class of software
where the absence of defects is highly de-
sirable; this is where formal verification is
useful. Formal verification can help prove
mathematically the correct implementation of
these systems.

We present a study of formal verifica-
tion applied to the domain of post-quantum
cryptography by implementing the McEliece
cryptosystem in LiquidHaskell and verifying
it using refinement types. As part of this
study we implement all of the supporting
mathematics required for the cryptosystem
including linear algebra (vectors/matrices),
coding theory, polynomial arithmetic, and
binary Galois field arithmetic.

1 Introduction

Widely used public key cryptosystems are vulern-
able to attacks from quantum computers. These

cryptosystems are based on one-way functions for
which there is no efficient solution to calculate
the inverse of the function; the security of the
system is built on this fact. Quantum computing
has introduced new algorithms which can efficiently
compute solutions to some of these problems. As
a result, cryptographers are working to implement
new cryptosystems based on problems that are not
efficiently solvable by quantum or digital computers
[1].

The McEliece cryptosystem is one such system
that dates back to the 70s when it was proposed by
Robert McEliece. The system is based on coding
theory and to break it an attacker would have to
solve the general decoding problem which is NP-
complete [5]. A modern variant of McEliece called
Classic McEliece is one of the finalists in the NIST
Post-Quantum standardization effort [2].

Formal verification can be used to prove the
absense of bugs in a way that automated or manual
testing cannot. Typically such verification is only
done for software which must be held to a high
standard. Cryptography is one such field where
even simple errors can have severe real-world
consequences [3].

In the following paper we show how a post-
quantum cryptosystem (McEliece) can be imple-
mented and formally verified using refinement
types with LiquidHaskell [4]. We also examine the

1



effort involved in performing such verification so as
to better understand the costs and benefits involved.

2 Post-Quantum Cryptography

Talk about PQC, NIST PQC competition, and the
different variants of the McEliece cryptosystem.

3 Verification Techniques

Talk about Haskell and LiquidHaskell, refinement
types and SMT solver, things that can be checked with
refinements versus what cannot.

3.1 Static Types

3.2 Refinement Types

3.3 Size-Aware API

3.4 Termination Checking

4 Implementation

Walk through the project with code and expected
output. Explain the theory for the backing math
enough that someone can follow along. In particular
go into detail on what is being verified at each stage
and how. This is obviously not going to be a book on
all of these topics, but it should read like a tutorial on
how to do something similar.

4.1 Linear Algebra

4.1.1 Vectors

4.1.2 Matrices

4.1.3 Binary Matrix Inversion

4.1.4 Matrix Right-Inverse

4.2 Coding Theory

4.2.1 Hamming Codes

4.2.2 Binary Goppa Codes

4.3 Number Theory

4.3.1 Polynomials

4.3.2 Galois Fields

4.3.3 Extended Euclidean Algorithm (EEA)

4.3.4 Polynomial EEA

4.4 McEliece Cryptosystem

4.4.1 Key Generation

4.4.2 Encryption

4.4.3 Decryption

5 Related Work

Talk about related work that motivated this, most
notably Project Everest (FStar and HACL). There are
some major differences between this project and that
(aside from scope). Also FStar has some capabilities
that LiquidHaskell does not currently have.

6 Conclusion

Talk about how the implementation went, which parts
were harder to verify, how much was verified, some

2



metrics (lines of code / refinements). Link to full source
code on Bitbucket if appropriate.

References

[1] Risse, T. (2011). How SAGE Helps To Implement
Goppa Codes and The McEliece Public Key
Crypto System.

[2] Computer Security Division. Post-quantum
cryptography: CSRC. Retrieved February 24,
2022, from https://csrc.nist.gov/Projects/post-
quantum-cryptography

[3] Jean-Karim Zinzindohoué, Karthikeyan
Bhargavan, Jonathan Protzenko, and Benjamin
Beurdouche. 2017. HACL*: A Verified Modern
Cryptographic Library. In Proceedings of
the 2017 ACM SIGSAC Conference on
Computer and Communications Security
(CCS ’17). Association for Computing
Machinery, New York, NY, USA, 1789–1806.
DOI:https://doi.org/10.1145/3133956.3134043

[4] Vazou, N., Seidel, E.L., Jhala, R., Vytiniotis, D.,
Peyton-jones, S. (2014). Refinement types for
Haskell. ICFP 2014.

[5] McEliece, R.J. (1978). A public key cryptosystem
based on algebraic coding theory.

3


