
Verified Post-Quantum
Cryptography

Milestone 2 (extended slides) - 2022/03/03

Tom Arnold <tca4384@rit.edu>

mailto:tca4384@rit.edu

Problem Statement / Solution
Problem: PQC is important. Can we formally verify a post-quantum cryptosystem?

Solution:

- Implement variants of McEliece post-quantum cryptosystem.

- Formally verify implementation using refinement types (LiquidHaskell).

- Show benefits/tradeoffs of using refinement types in a small-scale project.

Previous & Current Milestone Goals
- Milestone 1

- ☑ Implement Hamming code version of McEliece.

- ☑ Verified using refinement types.

- Milestone 2

- 🗆 Implement matrix inversion routine.

- 🗆 Research and implement Goppa code version of McEliece.

Milestone 2 Results
- ☑ Implemented and verified binary-matrix inversion.

- Algorithm based on elementary-row operations.

- Used during McEliece decryption, these were calculated by hand previously.

- ☑ Implemented Goppa code version of McEliece.

- Implemented polynomial arithmetic and binary Galois field arithmetic.

- Operations: addition, subtraction, multiplication, division, polynomial and field inversion, &

polynomial evaluation.

- Operands: polynomials of binary field elements.

- Not fully verified yet, verification of polynomial arithmetic difficult.

~1000 lines of code written for this milestone.

Roadmap For Milestone 3
- Finish verification of polynomial and field arithmetic.

- Implement the Niederreiter variant of McEliece.

Polynomial Implementation
- Polynomial = vector of coefficients

- Degree of polynomial = size of vector

- Tricky part: leading zero coefficients

- Doing this convenient for addition/subtraction, causes problems with everything else though

- Add/subtract: +/- coefficients

- Multiplication

- Multiply pairs of terms, sum result

- Degree of output = sum of degrees of input

 2 1 0 1 0 3 2 2 1 1 0

[A B C] x [D E] = [AD + AE + BD + BE + CD + CE]

[AX

2

 + BX + C] x [DX + E] = [ADX

3

 +AEX

2

 + BDX

2

 + BEX + CDX + CE]

 3 2 1 0

 = [AD AEBD BECD CE]

[1 1 1] = [X

2

 + X + 1]

[0 1 1 1] = [X

2

 + X + 1], degree 2 not 3!

Polynomial Implementation (2)
- Division

- Quotient is 0, remainder is numerator

- Divide leading terms -> Add to quotient, multiply by denominator and subtract from remainder

- Stop when remainder is zero or degree of remainder is less than denominator

- Degree of outputs

- Quotient: difference of leading terms if numerator has larger degree, otherwise 0

- Remainder: degree of second term of denominator if smaller, otherwise degree of

denominator

https://en.wikipedia.org/wiki/Polynomial_long_division#Pseudocode

q = 0

r = X

5

 + 1

t = X

5

 / X

3

 = X

2

q' = X

2

r' = X

5

 + 1 - (X

2

 x X

3

) = 1

deg(r') < deg(d) so return (q, r) -> (X

2

, 1)n = X

5

+ 1

d = X

3

https://en.wikipedia.org/wiki/Polynomial_long_division#Pseudocode

Polynomial Implementation (3)
- Modular inverse (p mod g)

- Run EEA on p and g: (b, s, t) = eea(p, g)

- Divide S by leading term of B: s / lead(b)

http://juaninf.blogspot.com/2013/04/function-make-div-with-id-mycell-sage.html

http://juaninf.blogspot.com/2013/04/function-make-div-with-id-mycell-sage.html

Galois Field Implementation
- Field = polynomial of bits (splitting/irreducible polynomial)

- Element = field and a polynomial of bits

- Add/subtract: same as polynomial (bit type is mod 2)

- Multiply: same as polynomial except reduce if result degree >= field polynomial

- Reduce

- Add 0's to field polynomial on the right so the degrees of both line up, then add them

- Repeat while degree >= field polynomial

Field = X

3

 + X

2

 + X + 1 = [1 1 1 1]

[X

2

 + X + 1] x [X

2

 + 1] = [X

4

 + X

3

 + X + 1] = [1 1 0 1 1] deg >= 3

 1 1 1 1 0 add field polynomial shifted left 1

 1 0 1 result has degree 2 < 3 so done

 = [X

2

 + 1]

Galois Field Implementation (2)
- Division of polynomials of bits: same as polynomial except AND coefficients

instead of dividing

- Division of field elements: find inverse via EEA and multiply

McEliece w/ Goppa Code Implementation
n = 23 = 8
f = z3 + z + 1
g = X2 + X + 1

codelocators = 0:1:[zi | i <- 1..6]
syndlocators = [(X - c)-1 % g | c <- codelocators]

generator = |1 1 0 0 1 0 1 1| scrambler = |0 1|
 |0 0 1 1 1 1 1 1| |1 0|

permutation = |0 1 0 0 0 0 0 0|
 |0 0 0 1 0 0 0 0|
 |0 0 0 0 0 0 1 0|
 |1 0 0 0 0 0 0 0|
 |0 0 1 0 0 0 0 0|
 |0 0 0 0 0 1 0 0|
 |0 0 0 0 1 0 0 0|
 |0 0 0 0 0 0 0 1|

generator' = scrambler x generator x permutation

Bob (setup)

ptext = |1 0|
err = |0 0 0 0 1 0 0 0|
ctext = ptext x generator' + err
 = |1 0 1 0 0 1 1 1|

Alice (encrypt)

ctext' = ctext x permutation-1
ctext'' = encodeAsVecPoly(ctext')
 = |0 0 1 1 1 1 0 1|

syndrome = dotProd(ctext'', syndlocators)
 = (z)X + (z2 + z + 1)

elp = extEuclidAlg(g, syndrome)
 = (z2 + 1)X + (z2 + z)

err = [if elp(c) == 0 then 1 else 0 | c <- codelocators]
 = |0 0 0 0 0 0 1 0|

ctext''' = ctext'' + err
 = |0 0 1 1 1 1 1 1|

ctext'''' = ctext''' x generator-1
 = |0 1|

ptext = ctext'''' x scrambler-1
 = |1 0|

Bob (decrypt)

Generator derived from codelocators, scrambler/permutation random.

References
- The Theory Of Error Correcting Codes chapter 12, Macwilliams and Sloane

- How Sage Helps To Implement Goppa Codes And The McEliece Public Key Crypto System, Risse

- Coding Theory-Based Cryptography: McEliece Cryptosystems In Sage, Roerin

- Code Based Cryptography in Python, David J.W. Hu

- Ejemplo Criptosistema McEliece en SAGE, Juan Grados

- A Course in Computational Algebraic Number Theory chapter 3, Henri Cohen

- Polynomial long division - Wikipedia

https://ebookcentral.proquest.com/lib/rit/reader.action?docID=648815
http://www.ubicc.org/files/pdf/SAGE_Goppa_McEliece_595.pdf
https://digitalcommons.csbsju.edu/cgi/viewcontent.cgi?article=1019&context=honors_theses
https://github.com/davidhoo1988/Code_Based_Cryptography_Python
http://juaninf.blogspot.com/2013/04/function-make-div-with-id-mycell-sage.html
https://ebookcentral.proquest.com/lib/rit/reader.action?docID=3098147
https://en.wikipedia.org/wiki/Polynomial_long_division#Pseudocode

