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Problem Statement / Solution
Problem: PQC is important. Can we formally verify a post-quantum cryptosystem?

Solution:

- Implement variants of McEliece post-quantum cryptosystem.

- Formally verify implementation using refinement types (LiquidHaskell).

- Show benefits/tradeoffs of using refinement types in a small-scale project.



Previous & Current Milestone Goals
- Milestone 1

- ☑ Implement Hamming code version of McEliece.

- ☑ Verified using refinement types.

- Milestone 2

- 🗆 Implement matrix inversion routine.

- 🗆 Research and implement Goppa code version of McEliece.



Milestone 2 Results
- ☑ Implemented and verified binary-matrix inversion.

- Algorithm based on elementary-row operations.

- Used during McEliece decryption, these were calculated by hand previously.

- ☑ Implemented Goppa code version of McEliece.

- Implemented polynomial arithmetic and binary Galois field arithmetic.

- Operations: addition, subtraction, multiplication, division, polynomial and field inversion, & 

polynomial evaluation.

- Operands: polynomials of binary field elements.

- Not fully verified yet, verification of polynomial arithmetic difficult.

~1000 lines of code written for this milestone.



Roadmap For Milestone 3
- Finish verification of polynomial and field arithmetic.

- Implement the Niederreiter variant of McEliece.



Polynomial Implementation
- Polynomial = vector of coefficients

- Degree of polynomial = size of vector

- Tricky part: leading zero coefficients  

- Doing this convenient for addition/subtraction, causes problems with everything else though

- Add/subtract: +/- coefficients

- Multiplication

- Multiply pairs of terms, sum result

- Degree of output = sum of degrees of input
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Polynomial Implementation (2)
- Division

- Quotient is 0, remainder is numerator

- Divide leading terms -> Add to quotient, multiply by denominator and subtract from remainder

- Stop when remainder is zero or degree of remainder is less than denominator

- Degree of outputs

- Quotient:  difference of leading terms if numerator has larger degree, otherwise 0

- Remainder: degree of second term of denominator if smaller, otherwise degree of 

denominator

https://en.wikipedia.org/wiki/Polynomial_long_division#Pseudocode
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Polynomial Implementation (3)
- Modular inverse (p mod g)

- Run EEA on p and g: (b, s, t) = eea(p, g)

- Divide S by leading term of B: s / lead(b)

http://juaninf.blogspot.com/2013/04/function-make-div-with-id-mycell-sage.html

http://juaninf.blogspot.com/2013/04/function-make-div-with-id-mycell-sage.html


Galois Field Implementation
- Field = polynomial of bits (splitting/irreducible polynomial)

- Element = field and a polynomial of bits

- Add/subtract: same as polynomial (bit type is mod 2)

- Multiply: same as polynomial except reduce if result degree >= field polynomial

- Reduce

- Add 0's to field polynomial on the right so the degrees of both line up, then add them

- Repeat while degree >= field polynomial
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Galois Field Implementation (2)
- Division of polynomials of bits: same as polynomial except AND coefficients 

instead of dividing

- Division of field elements: find inverse via EEA and multiply



McEliece w/ Goppa Code Implementation
n = 23 = 8
f = z3 + z + 1
g = X2 + X + 1

codelocators = 0:1:[zi | i <- 1..6]
syndlocators = [(X - c)-1 % g | c <- codelocators]

generator = |1 1 0 0 1 0 1 1|  scrambler = |0 1|
            |0 0 1 1 1 1 1 1|              |1 0|

permutation = |0 1 0 0 0 0 0 0|
              |0 0 0 1 0 0 0 0|
              |0 0 0 0 0 0 1 0|
              |1 0 0 0 0 0 0 0|
              |0 0 1 0 0 0 0 0|
              |0 0 0 0 0 1 0 0|
              |0 0 0 0 1 0 0 0|
              |0 0 0 0 0 0 0 1|

generator' = scrambler x generator x permutation

Bob (setup)

ptext = |1 0|
err   = |0 0 0 0 1 0 0 0|
ctext = ptext x generator' + err
      = |1 0 1 0 0 1 1 1|

Alice (encrypt)

ctext'  = ctext x permutation-1
ctext'' = encodeAsVecPoly(ctext')
        = |0 0 1 1 1 1 0 1|

syndrome = dotProd(ctext'', syndlocators)
         = (z)X + (z2 + z + 1)

elp = extEuclidAlg(g, syndrome)
    = (z2 + 1)X + (z2 + z)

err = [if elp(c) == 0 then 1 else 0 | c <- codelocators]
    = |0 0 0 0 0 0 1 0|

ctext''' = ctext'' + err 
         = |0 0 1 1 1 1 1 1|

ctext'''' = ctext''' x generator-1
          = |0 1|

ptext = ctext'''' x scrambler-1 
      = |1 0|

Bob (decrypt)

Generator derived from codelocators, scrambler/permutation random.
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