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Post-quantum cryptography is being developed and 
standardized to resist attacks from quantum 
computers. Standardization focuses on correctness 
of the algorithm and performance of the 
implementation [2]. Formal verification techniques 
can be used to ensure correctness of the 
implementation to reduce the chance of 
implementation flaws breaking the security of the 
system.

McEliece is a post-quantum public-key 
cryptosystem based on binary Goppa codes and 
coding theory. Several variants of McEliece exist, 
one of which is a candidate in the NIST PQC 
competition (Classic McEliece). In this project we 
implemented McEliece and Niederreiter (a McEliece 
variant) in Haskell and verified the implementations 
using refinement types. The goal of the project was 
to show that refinement types are a useful tool for 
cryptography.

Refinement Types
Refinement types use logical predicates to make types more specific so that 
logic errors can be caught at compile time instead of runtime. Most 
programming languages have an integer type for example, but refinement 
types allow the developer to trivially annotate a function as accepting a subset 
of integers, e.g. only positive integers or only integers in a certain range. 
Refinement types allow reasoning about sizes and can be used to safely 
eliminate runtime bounds checking. Refinement types can even be used to 
verify that a function terminates.

For our verification work we used a Haskell implementation of refinement 
types called Liquid Haskell. This is a plugin for the GHC Haskell compiler 
which integrates refinement types via code annotations. The refinement types 
are checked at compile-time using the Z3 SMT solver which is installed 
separately [3].
Example: Extended Euclid Algorithm

Example: Appending Matrix Columns

Example: Derived Constraints

McEliece / Niederreiter Cryptosystems
McEliece and Niederreiter are code-based public-key cryptosystems that are 
resistant to quantum attacks when implemented with a binary Goppa code 
and sufficiently large security parameters. The systems have equivalent 
security but Niederreiter can have 50% smaller keys and faster encryption 
(due to the smaller key) [4].
Example: Niederreiter PKE [5]
Key Generation
n = 23 = 8    f = z3 + z + 1    g = X2 + X + 1    codelocators = 0:1:[(z2)i | i <- 1..6]
H =                         S =                   P =

H' = S x H x P
Encryption
ptext =                                       ctext = H' x ptextT = 
Decryption
syndrome = encodeAsPoly(S-1 x ctextT) = z2X + z
(g0, g1) = split(g)                             (t0, t1) = split(t + X)
        w = g0 x inverse(g1, g)                   r = t0 + w x t1    
         t = polyInv(syndrome, g)   (_, u, v) = modifiedEEA(g, r)
errorlocator = u2 + X x v2 = z2X2 + X + z2 + 1
error  = [errorlocator(c) | c <- codelocators] = 
ptext' = P-1 x errorT = 

Results
• Implemented McEliece and Niederreiter cryptosystems in Haskell 

and verified with refinement types.
• Matrix and vector math including binary matrix inversion.
• Univariate polynomial math and binary Galois fields.
• Extended Euclid Algorithm.
• Patterson's decoding algorithm for Goppa codes.
• Toy examples of McEliece and Niederreiter encryption/decryption.

• 2,182 lines of code.
• 928 lines of implementation.
• 919 lines of comments & doctests.
• 335 lines of refinement annotations.

• All code verified with refinement types except for GF2 reduction and 
polynomial division which were not verified to terminate.
• Size-aware API for vectors and matrices provides bounds checking and 

prevents off-by-one errors.
• Recursive functions guaranteed to terminate.
• Avoiding divide by zero by requiring non-zero parameters.
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Conclusion
Refinement types have been a useful tool for implementing McEliece 
variants during this project. In many cases the refinements were simply 
assertions that would normally be checked at runtime, lifted into 
compile-time checks. Adding refinements was generally a one-time 
development cost that paid for itself when editing the code later. 
Combined with a good test suite (this project used doctests) this 
strategy could be used to build high-assurance systems.

The main challenge working with refinement types was in proving 
properties about custom data types, e.g. proving that dividing by a 
non-zero polynomial was safe, or proving that adding binary field 
elements of the same degree would always produce an element of a 
lower degree. Refinements also slightly increased the compile time for 
the project, although upgrading to the latest Z3 SMT solver has 
noticeably improved this.Private Key

Public Key

Patterson's 
algorithm [1]

Called with non-zero divisor 
so DBZ is unchecked.

1. b0 is greater than r.
2. Remainder is smaller than r.
3. r is decreasing.
4. ∴ function terminates. ∎

Inputs have same number of rows.
Output has same number 
of rows as input & the sum 
of the columns.

d-degree polynomial has d + 1 coefficients.

Function returns list 
of size nParts.

Constructor refinement checks that degree & 
coefficients match up.
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