
Verified Post-Quantum Cryptography
Tom Arnold <tca4384@rit.edu> | Advisor: Dr. Stanisław Radziszowski | https://tom9729.bitbucket.io/csci788/

Post-quantum cryptography is being developed and
standardized to resist attacks from quantum
computers. Standardization focuses on correctness
of the algorithm and performance of the
implementation [2]. Formal verification techniques
can be used to ensure correctness of the
implementation to reduce the chance of
implementation flaws breaking the security of the
system.

McEliece is a post-quantum public-key
cryptosystem based on binary Goppa codes and
coding theory. Several variants of McEliece exist,
one of which is a candidate in the NIST PQC
competition (Classic McEliece). In this project we
implemented McEliece and Niederreiter (a McEliece
variant) in Haskell and verified the implementations
using refinement types. The goal of the project was
to show that refinement types are a useful tool for
cryptography.

Refinement Types
Refinement types use logical predicates to make types more specific so that
logic errors can be caught at compile time instead of runtime. Most
programming languages have an integer type for example, but refinement
types allow the developer to trivially annotate a function as accepting a subset
of integers, e.g. only positive integers or only integers in a certain range.
Refinement types allow reasoning about sizes and can be used to safely
eliminate runtime bounds checking. Refinement types can even be used to
verify that a function terminates.

For our verification work we used a Haskell implementation of refinement
types called Liquid Haskell. This is a plugin for the GHC Haskell compiler
which integrates refinement types via code annotations. The refinement types
are checked at compile-time using the Z3 SMT solver which is installed
separately [3].
Example: Extended Euclid Algorithm

Example: Appending Matrix Columns

Example: Derived Constraints

McEliece / Niederreiter Cryptosystems
McEliece and Niederreiter are code-based public-key cryptosystems that are
resistant to quantum attacks when implemented with a binary Goppa code
and sufficiently large security parameters. The systems have equivalent
security but Niederreiter can have 50% smaller keys and faster encryption
(due to the smaller key) [4].
Example: Niederreiter PKE [5]
Key Generation
n = 23 = 8 f = z3 + z + 1 g = X2 + X + 1 codelocators = 0:1:[(z2)i | i <- 1..6]
H = S = P =

H' = S x H x P
Encryption
ptext = ctext = H' x ptextT =
Decryption
syndrome = encodeAsPoly(S-1 x ctextT) = z2X + z
(g0, g1) = split(g) (t0, t1) = split(t + X)
 w = g0 x inverse(g1, g) r = t0 + w x t1
 t = polyInv(syndrome, g) (_, u, v) = modifiedEEA(g, r)
errorlocator = u2 + X x v2 = z2X2 + X + z2 + 1
error = [errorlocator(c) | c <- codelocators] =
ptext' = P-1 x errorT =

Results
• Implemented McEliece and Niederreiter cryptosystems in Haskell

and verified with refinement types.
• Matrix and vector math including binary matrix inversion.
• Univariate polynomial math and binary Galois fields.
• Extended Euclid Algorithm.
• Patterson's decoding algorithm for Goppa codes.
• Toy examples of McEliece and Niederreiter encryption/decryption.

• 2,182 lines of code.
• 928 lines of implementation.
• 919 lines of comments & doctests.
• 335 lines of refinement annotations.

• All code verified with refinement types except for GF2 reduction and
polynomial division which were not verified to terminate.
• Size-aware API for vectors and matrices provides bounds checking and

prevents off-by-one errors.
• Recursive functions guaranteed to terminate.
• Avoiding divide by zero by requiring non-zero parameters.

References
This project was inspired by MSR-INRIA's Project Everest which is implementing a
formally verified TLS stack (https://project-everest.github.io/).

[1] Risse, T. (2011). How SAGE Helps To Implement Goppa Codes and The McEliece
Public Key Crypto System.
[2] Computer Security Division. Post-quantum cryptography: CSRC. Retrieved
February 24, 2022, from https://csrc.nist.gov/Projects/post-quantum-cryptography
[3] Niki Vazou, Eric L. Seidel, and Ranjit Jhala. 2014. LiquidHaskell: experience with
refinement types in the real world. SIGPLAN Not. 49, 12 (December 2014), 39–51.
[4] Pascal Véron. Code based cryptography and steganography. CAI 2013, 5th
International Conference on Algebraic Informatics, Sep 2013, Porquerolles, France.
pp.9-46.
[5] Minihold, Matthias. “Linear Codes and Applications in Cryptography.” (2013).

2022/04/14

Conclusion
Refinement types have been a useful tool for implementing McEliece
variants during this project. In many cases the refinements were simply
assertions that would normally be checked at runtime, lifted into
compile-time checks. Adding refinements was generally a one-time
development cost that paid for itself when editing the code later.
Combined with a good test suite (this project used doctests) this
strategy could be used to build high-assurance systems.

The main challenge working with refinement types was in proving
properties about custom data types, e.g. proving that dividing by a
non-zero polynomial was safe, or proving that adding binary field
elements of the same degree would always produce an element of a
lower degree. Refinements also slightly increased the compile time for
the project, although upgrading to the latest Z3 SMT solver has
noticeably improved this.Private Key

Public Key

Patterson's
algorithm [1]

Called with non-zero divisor
so DBZ is unchecked.

1. b0 is greater than r.
2. Remainder is smaller than r.
3. r is decreasing.
4. ∴ function terminates. ∎

Inputs have same number of rows.
Output has same number
of rows as input & the sum
of the columns.

d-degree polynomial has d + 1 coefficients.

Function returns list
of size nParts.

Constructor refinement checks that degree &
coefficients match up.

Introduction

mailto:tca4384@rit.edu
https://tom9729.bitbucket.io/csci788/
https://project-everest.github.io/

