
Verified Post-Quantum Cryptography
Tom Arnold <tca4384@rit.edu> | Advisor: Dr. Stanisław Radziszowski | https://tom9729.bitbucket.io/csci788/

Post-quantum cryptography is being developed and
standardized to resist attacks from quantum
computers. Standardization focuses on correctness
of the algorithms and performance of the
implementations [2]. Formal verification techniques
can be used to ensure correctness of the
implementations which helps to reduce the chance
of implementation flaws breaking the security of the
system.

Classic McEliece is a post-quantum public-key
cryptosystem being standardized by NIST which is
based on binary Goppa codes and coding theory.
Several variants of it exist; in this project we
implemented two of them in Haskell and verified the
implementations using refinement types. The goal of
the project was to show that refinement types are a
useful tool for cryptography.

Refinement Types
Refinement types use logical predicates to make types more specific so that
logic errors can be caught at compile time instead of runtime. Refinement
types allow the developer to annotate a function as accepting a subset of a
type, e.g. only positive integers or only integers in a certain range. Refinement
types allow reasoning about sizes and can be used to safely eliminate runtime
bounds checking. Refinement types can also be used to verify that a function
terminates.

For our verification work we used Haskell (https://www.haskell.org/), a
functional programming language with an advanced type system, and an
extension called Liquid Haskell which adds support for refinement types via
code annotations [3]. The refinement types are checked at compile-time using
the Z3 theorem prover (https://github.com/Z3Prover/z3).

McEliece / Niederreiter Cryptosystems

Example: Niederreiter PKE [5]
Key Generation
n = 23 = 8 f = z3 + z + 1 g = X2 + X + 1 codelocators = 0:1:[(z2)i | i <- 1..6]
H = S = P =

H' = S x H x P
Encryption
ptext = ctext = H' x ptextT =
Decryption
syndrome = encodeAsPoly(S-1 x ctextT) = z2X + z
(g0, g1) = split(g) (t0, t1) = split(t + X)
 w = g0 x inverse(g1, g) r = t0 + w x t1
 t = polyInv(syndrome, g) (_, u, v) = modifiedEEA(g, r)
errorlocator = u2 + X x v2 = z2X2 + X + z2 + 1
error = [errorlocator(c) | c <- codelocators] =
ptext' = P-1 x errorT =

Results
• Implemented McEliece and Niederreiter cryptosystems in Haskell

and verified with refinement types.
• Matrix and vector math including binary matrix inversion.
• Univariate polynomial math and binary Galois fields.
• Extended Euclid Algorithm.
• Patterson's decoding algorithm for Goppa codes.
• Toy examples of McEliece and Niederreiter encryption/decryption.

• All code verified with refinement types except for GF2 reduction and
polynomial division which were not verified to terminate.
• Size-aware API for vectors and matrices provides bounds checking and

prevents off-by-one errors.
• Recursive functions guaranteed to terminate.
• Avoid divide by zero by requiring non-zero parameters.

• Refinement types can eliminate certain classes of errors with only a
modest increase of implementation complexity and are a useful tool
for cryptography.

References
This project was inspired by MSR-INRIA's Project Everest which is implementing a
formally verified TLS stack (https://project-everest.github.io/).
[1] Risse, T. (2011). How SAGE Helps To Implement Goppa Codes and The McEliece
Public Key Crypto System. Hochschule Bremen, University of Applied Sciences.
[2] NIST Computer Security Division. Post-quantum cryptography: CSRC. Retrieved
February 24, 2022, from https://csrc.nist.gov/Projects/post-quantum-cryptography
[3] Niki Vazou, Eric L. Seidel, and Ranjit Jhala. 2014. LiquidHaskell: experience with
refinement types in the real world. SIGPLAN Not. 49, 12 (December 2014), 39–51.
University of California San Diego.
[4] Pascal Véron. Code based cryptography and steganography. CAI 2013, 5th
International Conference on Algebraic Informatics, Sep 2013, Porquerolles, France.
pp.9-46.
[5] Minihold, Matthias. “Linear Codes and Applications in Cryptography.” (2013).
Master's Thesis, Vienna University of Technology.

2022/04/28

Private Key

Public Key

Patterson's
algorithm [1]

Called with non-zero divisor
so DBZ is unchecked.

1. b0 is greater than r.
2. Remainder is smaller than r.
3. r is decreasing.
4. ∴ function terminates. ∎

Inputs have same number of rows.
Output has same number
of rows as input & the sum
of the columns.

d-degree polynomial has d + 1 coefficients.

Function returns list
of size nParts.

Constructor refinement checks that degree &
coefficients match up.

Introduction

Verifying The McEliece Cryptosystem With Refinement Types

McEliece and Niederreiter are code-based public-key cryptosystems that are
resistant to quantum attacks when implemented with a binary Goppa code
and sufficiently large security parameters. The systems have equivalent
security but Niederreiter can have 50% smaller keys and faster encryption
(due to the smaller key) [4].

Example: Extended Euclid Algorithm

Example: Appending Matrix Columns

Example: Derived Constraints

Note: This is a toy example for demonstration purposes. To provide comparable security
to RSA-2048 this would require n=2048 and Goppa polynomial degree of 30 [4].

Lines Of Code

Refinement types have been a useful tool for implementing McEliece
variants during this project. In many cases the refinements were simply
assertions that would normally be checked at runtime, lifted into
compile-time checks. Adding refinements was generally a one-time
development cost that paid for itself when editing the code later.
Combined with a good test suite (this project used doctests) this
strategy could be used to build high-assurance systems.

The main challenge of working with refinement types was proving
properties about custom data types, e.g. proving that dividing by a
non-zero polynomial was safe, or proving that adding binary field
elements of the same degree would always produce an element of a
lower degree. Refinements also slightly increased the compile time for
the project, although upgrading to the latest Z3 theorem prover
noticeably improved this.

Conclusion

mailto:tca4384@rit.edu
https://tom9729.bitbucket.io/csci788/
https://www.haskell.org/
https://github.com/Z3Prover/z3
https://project-everest.github.io/

