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Post-quantum cryptography is being developed and 
standardized to resist attacks from quantum 
computers. Standardization focuses on correctness 
of the algorithms and performance of the 
implementations [2]. Formal verification techniques 
can be used to ensure correctness of the 
implementations which helps to reduce the chance 
of implementation flaws breaking the security of the 
system.

Classic McEliece is a post-quantum public-key 
cryptosystem being standardized by NIST which is 
based on binary Goppa codes and coding theory. 
Several variants of it exist; in this project we 
implemented two of them in Haskell and verified the 
implementations using refinement types. The goal of 
the project was to show that refinement types are a 
useful tool for cryptography.

Refinement Types
Refinement types use logical predicates to make types more specific so that 
logic errors can be caught at compile time instead of runtime. Refinement 
types allow the developer to annotate a function as accepting a subset of a 
type, e.g. only positive integers or only integers in a certain range. Refinement 
types allow reasoning about sizes and can be used to safely eliminate runtime 
bounds checking. Refinement types can also be used to verify that a function 
terminates.

For our verification work we used Haskell (https://www.haskell.org/), a 
functional programming language with an advanced type system, and an 
extension called Liquid Haskell which adds support for refinement types via 
code annotations [3]. The refinement types are checked at compile-time using 
the Z3 theorem prover (https://github.com/Z3Prover/z3).

McEliece / Niederreiter Cryptosystems

Example: Niederreiter PKE [5]
Key Generation
n = 23 = 8    f = z3 + z + 1    g = X2 + X + 1    codelocators = 0:1:[(z2)i | i <- 1..6]
H =                         S =                   P =

H' = S x H x P
Encryption
ptext =                                       ctext = H' x ptextT = 
Decryption
syndrome = encodeAsPoly(S-1 x ctextT) = z2X + z
(g0, g1) = split(g)                             (t0, t1) = split(t + X)
        w = g0 x inverse(g1, g)                   r = t0 + w x t1    
         t = polyInv(syndrome, g)   (_, u, v) = modifiedEEA(g, r)
errorlocator = u2 + X x v2 = z2X2 + X + z2 + 1
error  = [errorlocator(c) | c <- codelocators] = 
ptext' = P-1 x errorT = 

Results
• Implemented McEliece and Niederreiter cryptosystems in Haskell 

and verified with refinement types.
• Matrix and vector math including binary matrix inversion.
• Univariate polynomial math and binary Galois fields.
• Extended Euclid Algorithm.
• Patterson's decoding algorithm for Goppa codes.
• Toy examples of McEliece and Niederreiter encryption/decryption.

• All code verified with refinement types except for GF2 reduction and 
polynomial division which were not verified to terminate.
• Size-aware API for vectors and matrices provides bounds checking and 

prevents off-by-one errors.
• Recursive functions guaranteed to terminate.
• Avoid divide by zero by requiring non-zero parameters.

• Refinement types can eliminate certain classes of errors with only a 
modest increase of implementation complexity and are a useful tool 
for cryptography.
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Patterson's 
algorithm [1]

Called with non-zero divisor 
so DBZ is unchecked.

1. b0 is greater than r.
2. Remainder is smaller than r.
3. r is decreasing.
4. ∴ function terminates. ∎

Inputs have same number of rows.
Output has same number 
of rows as input & the sum 
of the columns.

d-degree polynomial has d + 1 coefficients.

Function returns list 
of size nParts.

Constructor refinement checks that degree & 
coefficients match up.

Introduction

Verifying The McEliece Cryptosystem With Refinement Types

McEliece and Niederreiter are code-based public-key cryptosystems that are 
resistant to quantum attacks when implemented with a binary Goppa code 
and sufficiently large security parameters. The systems have equivalent 
security but Niederreiter can have 50% smaller keys and faster encryption 
(due to the smaller key) [4].

Example: Extended Euclid Algorithm

Example: Appending Matrix Columns

Example: Derived Constraints

Note: This is a toy example for demonstration purposes. To provide comparable security 
to RSA-2048 this would require n=2048 and Goppa polynomial degree of 30 [4].

Lines Of Code

Refinement types have been a useful tool for implementing McEliece 
variants during this project. In many cases the refinements were simply 
assertions that would normally be checked at runtime, lifted into 
compile-time checks. Adding refinements was generally a one-time 
development cost that paid for itself when editing the code later. 
Combined with a good test suite (this project used doctests) this 
strategy could be used to build high-assurance systems.

The main challenge of working with refinement types was proving 
properties about custom data types, e.g. proving that dividing by a 
non-zero polynomial was safe, or proving that adding binary field 
elements of the same degree would always produce an element of a 
lower degree. Refinements also slightly increased the compile time for 
the project, although upgrading to the latest Z3 theorem prover 
noticeably improved this.

Conclusion
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