Verified Post-Quantum Cryptography

 $\bullet \bullet \bullet$

Project Overview

Tom Arnold <tca4384@rit.edu>

Background

- New cryptosystems being developed to withstand attacks from quantum computers.
 - Shor's integer factoring algorithm can break RSA
 - NIST Post Quantum Cryptography competition
- Secure cryptosystem can be broken by implementation details.
 - Timing attacks, memory corruption, bad parameters, etc.
- Formal verification techniques are becoming practical.
 - MSR-INRIA Project Everest => miTLS, fully verified TLS stack.

Problem Statement

- Can we implement a formally verified post-quantum cryptosystem?
- Classic McEliece is one of the NIST PQC finalists. This is a high-security/performance variant of the McEliece cryptosystem from the 70s.
- Implement variants of McEliece, formally verify them, analyze security.

Related Work

- Classic McEliece PQC finalist
 - https://classic.mceliece.org
- FStar Programming language for formal verification.
 - <u>https://fstar-lang.org</u>
- HACL High Assurance Cryptographic Library
 - <u>https://github.com/project-everest/hacl-star</u>
 - Implements formally verified cryptographic primitives.
 - Big numbers, AES, SHA, etc.

Overview of Solution / Approach

- Use the FStar language from MSR-Inria to implement variants of McEliece cryptosystem.
 - McEliece Code-based system from the 70s
 - Niederreiter High performance variant
- Leverage FStar standard library and HACL for crypto primitives (Galois fields, matrices, buffers)

Experimental Plan

- Analyze and compare McEliece variants
 - Implementation complexity
 - Performance
 - Key size, security
- Are there any tradeoffs from formal verification?

See <u>https://tom9729.bitbucket.io/csci788/</u> for more information on the project.